Sunday, November 24, 2024

Articles

[1] F. Parvaresh, R. Sobhani, A. Abdollahi, J. Bagherian, F. Jafari, and M. Khatami, Improved bounds on the size of permutation codes under Kendall $\tau$-metric, arXiv preprint arXiv:2406.06029, 2024.
 
[2] A. Abdollahi, J. Bagherian, F. Jafari, M. Khatami, F.Parvaresh and R. Sobhani, New Upper Bounds on the Size of Permutation Codes Under Kendall Tau Metric, Cryptography and Communications, 15 (2023), 891–903. DOI: 10.1007/s12095-023-00642-6 .
 
[3] F. Jafari, A. Abdollahi, J. Bagherian, M. Khatami and R. Sobhani, Equidistant permutation group codes, Designs, Codes and Cryptography, (2022) 1-19. DOI :10.1007/s10623-021-00997-y.
 
[4] A. Abdollahi, J. Bagherian, F. Jafari, M. Khatami, F. Parvaresh and R. Sobhani, New table of Bounds on Permutation Codes under Kendall τ-Metric, 10th Iran Workshop on Communication and Information Theory (IWCIT), Iran, Islamic Republic of, 2022, pp. 1-3. doi: 10.1109/IWCIT57101.2022.10206659.
 
[5] R. Sobhani, A. Abdollahi, J. Bagherian, M. Khatami, A note on good permutation codes from Reed–Solomon codes, Designs, Codes and Cryptography, 87 (2019) 2335-2340.
DOI:10.1007/s10623-019-00621-0
 
[6] A. Abdollahi, J. Bagherian, M. Khatami, Z. Shahbazi and R. Sobhani, A conjecture of Cameron and Kiyota on sharp characters with prescribed values, Communications in Algebra, 50 (2022), 2731-2739. DOI:10.1080/00927872.2021.2018594.
 
[7] A. Abdollahi, J. Bagherian, M. Ebrahimi, M. Khatami, Z. Shahbazi and R. Sobhani, On sharp characters of type {-1,0,2}, Czechoslovak Mathematical Journal, (2022). https://doi.org/10.21136/CMJ.2022.0356-21.
 
[8] A. Abdollahi, J. Bagherian, M. Ebrahimi, F. M. Garmsiri, M. Khatami and R. Sobhani, Groups with sharp non-linear irreducible characters. Communications in Algebra, (2022) 1-13. https://doi.org/10.1080/00927872.2022.2120197.
Date:
2024/07/06
Views:
204
Powered by DorsaPortal