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ABSTRACT. A central question in the theory of permutation codes
is determining the value of P(n,d), representing the size of the
largest subset of the set of all permutations on {1,...,n}, S,, with
minimum Kendall 7-distance d. In this paper, we present some of
our results regarding the exact values or upper bounds for P(n,d).

1. INTRODUCTION AND PRELIMINARIES

To tackle challenges in flash memories, the rank modulation scheme
was introduced, as detailed in [6], employing permutations as code-
words. In this context, permutation codes underwent thorough exam-
ination utilizing three metrics: the Kendall 7-metric [1, 6, 12, 10, 11],
the Ulam metric [8], and the £, metric [7, 9]. This study distinctly
focuses on permutation codes under the Kendall 7-metric.
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A Permutation Code (PC) with length n signifies a non-empty subset
of Sy, encompassing all permutations of [n] := {1,2,...,n}. In the con-
text of a permutation 7 := [7(1),7(2),...,7(i), 7(i+1),...,7(n)] € Sy,
an adjacent transposition, denoted as (7,74 1) for 1 <7 < n—1, trans-
forms 7 into the permutation [7(1),7(2),...,7(i + 1), 7(i),...,7(n)].
The Kendall 7-distance between two permutations, p and 7 in S, is
defined as the minimum number of adjacent transpositions required to
express pr—* as their product. In the context of the Kendall T-metric,
a PC of length n with minimum distance d can correct up to % errors
induced by charge-constrained errors, as cited in [6].

In the realm of permutation code theory, a central question revolves
around determining P(n, d), representing the size of the largest code in
S, with minimum Kendall 7-distance d, for d < (g) It is known that
P(n,1) = nl and P(n,2) = %. Also it is known that if 2(}) < d < (}),
then P(n,d) =2 (see [1, Theorem 10]). However, determining P(n,d)
turns out to be difficult for 3 < d < %(g) and several researchers have
presented bounds on P(n,d) (see [3, 4, 6, 12, 10, 11]).

The sphere packing bound [0, Theorems 12 and 13], establishes that
P(n,3) < (n—1)!. APC of size (n—1)! and with minimum Kendall 7-
distance 3 in S, is called a 1-perfect code. Notably, in [5, Corollary 2.5
and Theorem 2.6] or [/, Corollary 2|, the following result corresponding
to the non-existence of 1-perfect codes in .S, is proved:

Theorem 1.1. If n > 4 is a prime number or 4 < n < 10, then there
18 mo 1-perfect code in S,

The enhancement provided by Theorem 1.1 to the corresponding
upper bound of P(n, 3) is modest, improving it by just one. Yet, within
this paper, we present some of our results that significantly improve
the upper bound of P(n,3) obtained by Theorem 1.1.

2. MAIN RESULTS

In [1], using a method that is based on the representation theory
of symmetric groups, we formulate an integer programming problem
depending on the choice of a non-trivial subgroup of S,. The opti-
mal value of the objective function, obtained through this formulation,
serves as an upper bound for P(n,3) (see [I, Theorem 2.14]). Sub-
sequently, solving the integer programming problem for specific sub-
groups of S,, results in a reduction of the known upper bound on P(n, 3)
by 3, 3,9, 11, 1, 1, 4 when n = 6,7,11, 13, 14, 15, 17, respectively. Ad-
ditionally, this process leads to an enhancement of the upper bound on
P(n,3) for prime values of n as follows:
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n | Theorem 1.1 | Theorem 2.1 | Theorem 2.2

31 1 13 9

37 1 15 62

41 1 16 330

43 1 17 456

47 1 18 2537

53 1 20 155518

59 1 22 195360

61 1 23 323371
TABLE 1..

Theorem 2.1. For all primes p > 11, P(p,3) < (p—1)! = [E] +2 <
(p—1)!—=2.

By strengthening Theorem 2.1, we managed to provide a new upper
bound as follows:

Theorem 2.2. For a prime number n and integer r < %,

n — 6r (n—1)!
Vn2 —8rn + 2012 \| n(n — 1)l
Let £k € N and P(n,3) = (n — 1)! — k. Table 1. compares the
values obtained for k from Theorems 1.1, 2.1 and 2.2 for prime numbers
31 < n < 61. We note that for all prime numbers 11 < n < 31, the
upper bound obtained from Theorem 2.1 is better that the upper bound
obtained from Theorem 2.2.

Also, we determine the exact value of P(n,d) for all 2(3) < d < 2(3)
as follows:

Theorem 2.3. [2] P(n,d) =4, for alln>6 and 2(3) <d < 2(3).

P(n,3) < (n—1)!—
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