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Abstract. A central question in the theory of permutation codes
is determining the value of P (n, d), representing the size of the
largest subset of the set of all permutations on {1, . . . , n}, Sn, with
minimum Kendall τ -distance d. In this paper, we present some of
our results regarding the exact values or upper bounds for P (n, d).

1. Introduction and preliminaries

To tackle challenges in flash memories, the rank modulation scheme
was introduced, as detailed in [6], employing permutations as code-
words. In this context, permutation codes underwent thorough exam-
ination utilizing three metrics: the Kendall τ -metric [1, 6, 12, 10, 11],
the Ulam metric [8], and the `∞ metric [7, 9]. This study distinctly
focuses on permutation codes under the Kendall τ -metric.
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A Permutation Code (PC) with length n signifies a non-empty subset
of Sn, encompassing all permutations of [n] := {1, 2, . . . , n}. In the con-
text of a permutation π := [π(1), π(2), . . . , π(i), π(i+1), . . . , π(n)] ∈ Sn,
an adjacent transposition, denoted as (i, i+ 1) for 1 ≤ i ≤ n−1, trans-
forms π into the permutation [π(1), π(2), . . . , π(i + 1), π(i), . . . , π(n)].
The Kendall τ -distance between two permutations, ρ and π in Sn, is
defined as the minimum number of adjacent transpositions required to
express ρπ−1 as their product. In the context of the Kendall τ -metric,
a PC of length n with minimum distance d can correct up to d−1

2
errors

induced by charge-constrained errors, as cited in [6].
In the realm of permutation code theory, a central question revolves

around determining P (n, d), representing the size of the largest code in
Sn with minimum Kendall τ -distance d, for d ≤

(
n
2

)
. It is known that

P (n, 1) = n! and P (n, 2) = n!
2

. Also it is known that if 2
3

(
n
2

)
< d ≤

(
n
2

)
,

then P (n, d) = 2 (see [4, Theorem 10]). However, determining P (n, d)
turns out to be difficult for 3 ≤ d ≤ 2

3

(
n
2

)
and several researchers have

presented bounds on P (n, d) (see [3, 4, 6, 12, 10, 11]).
The sphere packing bound [6, Theorems 12 and 13], establishes that

P (n, 3) ≤ (n−1)!. A PC of size (n−1)! and with minimum Kendall τ -
distance 3 in Sn is called a 1-perfect code. Notably, in [5, Corollary 2.5
and Theorem 2.6] or [4, Corollary 2], the following result corresponding
to the non-existence of 1-perfect codes in Sn is proved:

Theorem 1.1. If n > 4 is a prime number or 4 ≤ n ≤ 10, then there
is no 1-perfect code in Sn

The enhancement provided by Theorem 1.1 to the corresponding
upper bound of P (n, 3) is modest, improving it by just one. Yet, within
this paper, we present some of our results that significantly improve
the upper bound of P (n, 3) obtained by Theorem 1.1.

2. main results

In [1], using a method that is based on the representation theory
of symmetric groups, we formulate an integer programming problem
depending on the choice of a non-trivial subgroup of Sn. The opti-
mal value of the objective function, obtained through this formulation,
serves as an upper bound for P (n, 3) (see [1, Theorem 2.14]). Sub-
sequently, solving the integer programming problem for specific sub-
groups of Sn results in a reduction of the known upper bound on P (n, 3)
by 3, 3, 9, 11, 1, 1, 4 when n = 6, 7, 11, 13, 14, 15, 17, respectively. Ad-
ditionally, this process leads to an enhancement of the upper bound on
P (n, 3) for prime values of n as follows:
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n Theorem 1.1 Theorem 2.1 Theorem 2.2
31 1 13 9
37 1 15 62
41 1 16 330
43 1 17 456
47 1 18 2537
53 1 20 155518
59 1 22 195360
61 1 23 323371

Table 1..

Theorem 2.1. For all primes p ≥ 11, P (p, 3) ≤ (p− 1)!− dp
3
e + 2 ≤

(p− 1)!− 2.

By strengthening Theorem 2.1, we managed to provide a new upper
bound as follows:

Theorem 2.2. For a prime number n and integer r ≤ n
6
,

P (n, 3) ≤ (n− 1)!− n− 6r√
n2 − 8rn+ 20r2

√
(n− 1)!

n(n− r)!
.

Let k ∈ N and P (n, 3) = (n − 1)! − k. Table 1. compares the
values obtained for k from Theorems 1.1, 2.1 and 2.2 for prime numbers
31 ≤ n ≤ 61. We note that for all prime numbers 11 ≤ n ≤ 31, the
upper bound obtained from Theorem 2.1 is better that the upper bound
obtained from Theorem 2.2.

Also, we determine the exact value of P (n, d) for all 3
5

(
n
2

)
< d ≤ 2

3

(
n
2

)
as follows:

Theorem 2.3. [2] P (n, d) = 4, for all n ≥ 6 and 3
5

(
n
2

)
< d ≤ 2

3

(
n
2

)
.
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