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Preface

In 1979, the Nobel Prize for Medicine and Physiology was awarded jointly to Allan
McLeod Cormack and Godfrey Newbold Hounsfield, the two pioneering scientist-
engineers primarily responsible for the development, in the 1960s and early 1970s,
of computerized axial tomography, popularly known as the CAT or CT scan. In his
papers [13], Cormack, then a Professor at Tufts University, in Massachusetts, devel-
oped certain mathematical algorithms that, he envisioned, could be used to create an
image from X-ray data. Working completely independently of Cormack and at about
the same time, Hounsfield, a research scientist at EMI Central Research Laboratories
in the United Kingdom, designed the first operational CT scanner as well as the first
commercially available model. (See [22] and [23].)

Since 1980, the number of CT scans performed each year in the United States has
risen from about 3 million to over 67 million. What few people who have had CT scans
probably realize is that the fundamental problem behind this procedure is essentially
mathematical: If we know the values of the integral of a two- or three-dimensional func-
tion along all possible cross-sections, then how can we reconstruct the function itself?
This particular example of what is known as an inverse problem was studied by Johann
Radon, an Austrian mathematician, in the early part of the twentieth century. Radon’s
work incorporated a sophisticated use of the theory of transforms and integral operators,
and, by expanding the scope of that theory, contributed to the development of the rich
and vibrant mathematical field of functional analysis. Cormack essentially rediscovered
Radon’s ideas, but did so at a time when technological applications were actually con-
ceivable. The practical obstacles to implementing Radon’s theories are several. First,
Radon’s inversion methods assume knowledge of the behavior of the function along
every cross-section, while, in practice, only a discrete set of cross-sections can feasi-
bly be sampled. Thus, it is possible to construct only an approximation of the solution.
Second, the computational power needed to process a multitude of discrete measure-
ments and, from them, to obtain a useful approximate solution has been available for

xi



xii Preface

just a few decades. The response to these obstacles has been a rich and dynamic devel-
opment both of theoretical approaches to approximation methods, including the use of
interpolation and filters, and of computer algorithms to effectively implement the ap-
proximation and inversion strategies. Alongside these mathematical and computational
advances, the machines that perform the scans have gone through several generations
of improvements in both the speed of data collection and the accuracy of the images,
while the range of applications has expanded well beyond the original focus on imag-
ing of the brain. Other related processes, such as positron emission tomography (PET),
have developed alongside the advances in CT.

Clearly, this subject crosses many disciplinary boundaries. Indeed, literature on tech-
nical aspects of medical imaging appears in journals published in engineering, math-
ematics, computer science, biomedical research, and physics. This book, which grew
out of a course I gave for undergraduate mathematics majors and minors at Villanova
University in 2008, addresses the mathematical fundamentals of the topic in a con-
cise way at a relatively elementary level. The emphasis is on the mathematics of CT,
though there is also a chapter on magnetic resonance imaging (MRI), another medical
imaging process whose originators have earned Nobel prizes. The discussion includes
the necessary theoretical background, but also the role of approximation methods and
some attention to the computer implementation of the inversion algorithms. A working
knowledge of multivariable calculus and basic vector and matrix methods should serve
as adequate prerequisite mathematics.

I hope you will join me, then, in this quest to comprehend one of the most significant
and beneficial technological advances of our time and to experience mathematics as an
inextricable part of human culture.

Villanova University, 2009



1

X-rays

1.1 Introduction

A computerized axial tomography (CAT or CT) scan is generated from a set of thou-
sands of X-ray beams, consisting of 160 or more beams at each of 180 directions. To
comprehend this large collection of X-rays, we must first understand just one beam.

When a single X-ray beam of known intensity passes through a medium, such as
muscle or brain tissue or an ancient Egyptian sarcophagus, some of the energy present
in the beam is absorbed by the medium and some passes through. The intensity of
the beam as it emerges from the medium can be measured by a detector. The difference
between the initial and final intensities tells us about the ability of the medium to absorb
energy. For the sort of X-rays one might get at the dentist’s office or for a suspected
broken bone, the detector is a piece of film. A fan- or cone-shaped set of X-rays is
emitted from a machine and those photons that are not blocked or absorbed by teeth
or bone expose the film, thus creating a picture of the medium. The picture essentially
lacks depth since anything positioned behind a point where the photons are blocked will
not be seen. This shortcoming highlights a significant difficulty in imaging, namely,
that the medium through which the X-rays pass is not homogeneous. For instance,
muscles are fibrous and denser in some parts than others; brain tissue is composed of
grey matter, water, blood, neurons, and more; inside the sarcophagus is a mummified,
partly decomposed body, but also remains of objects that were buried along with the
deceased.

The idea behind the CT scan is that, by measuring the changes in the intensity of X-
ray beams passing through the medium in different directions and, then, by comparing
the measurements, we might be able to determine which locations within the medium
are more absorbent or less absorbent than others.

To get an idea of how this works, let’s start with a simple model. Suppose we have
a one-centimeter-thick slice of material (the medium) in the shape of a square. The
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2 1 X-rays

square is divided into a 3-by-3 rectangular grid of smaller squares each of which is
either black or white. Each white square absorbs “1 unit” of X-ray energy while the
black squares do not absorb X-ray energy. (So the white squares act like bone, say, and
the black ones act like air.) Suppose now that an X-ray beam passing through the first
row of the grid loses 2 energy units. It follows that there must be two white squares,
and one black square, in the first row of the grid. If an X-ray beam passing through the
first column of the grid loses 1 unit of energy, then the first column would contain only
one white square. At this point, there are only four possibilities for the configuration
of the first row and column (instead of the initial 25 = 32 possibilities for these five
squares), namely, Row 1 = WWB and Column 1 = WBB; Row 1 = WBW and Column
1 = WBB; Row 1 = BWW and Column 1 = BWB; or Row 1 = BWW and Column
1 = BBW. Continuing in this way, suppose that we measure the following losses in
X-ray energy for the various rows and columns of the grid: Row 1 → 2 units lost; Row
2 → 2 units; Row 3 → 1 unit; Column 1 → 1 unit; Column 2 → 2 units; and Column
3 → 2 units of energy lost. Figure 1.1 shows one of several possible configurations of
black and white squares that are consistent with these measurements. What are the other

Fig. 1.1. This grid of white and black squares has a prescribed X-ray energy absorption for each row
and column.

possible configurations? Is there an easy way to determine the total number of white
squares, and, consequently, the total number of black squares, in the grid? Is there more
than one consistent pattern? If so, what additional information might help to pinpoint
a unique shading pattern? For a rich and highly entertaining elaboration on this model
for thinking about CT scans, see [18].

In some sense, creating an image from a CT scan consists of carrying out a scheme
like this on a rectangular image grid subdivided into thousands of small squares. Instead
of just black or white, each square is assigned a greyscale value—a number between
0 and 1, where, by common practice, black is 0 and white is 1—based on the energy-
absorption ability of the material located in that square in the grid. Each X-ray passing
through the material is measured, and the change in intensity gives us information about
the amount of grey encountered along the path of the beam. What is not known is
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precisely where along the way the reduction in energy occurred. Once we know the
changes in intensity for enough X-rays, we try to create an image whose greyscale
values are consistent with the measurements. This approach to image construction is
akin to the basic idea implemented by Hounsfield in his early CT scanners and will be
discussed in a more refined way in Chapter 9.

1.2 X-ray behavior and Beer’s law

To simplify the analysis, we will make some assumptions that present an idealized view
of what an X-ray is and how it behaves. Specifically, in thinking of an X-ray beam as
being composed of photons, we will assume that the beam is monochromatic. That is,
each photon has the same energy level E and the beam propagates at a constant fre-
quency, with the same number of photons per second passing through every centimeter
of the path of the beam. If N(x) denotes the number of photons per second passing
through a point x, then the intensity of the beam at the point x is

I(x) = E ·N(x).

We also assume that an X-ray beam has zero width and that it is not subject to refraction
or diffraction. That is, X-rays beams are not bent by the medium nor do they spread out
as they propagate.

Every substance through which an X-ray passes has the property that each millime-
ter of the substance absorbs a certain proportion of the photons that pass through it.
This proportion, which is specific to the substance, is called the attenuation coefficient
of that material. The units of the attenuation coefficient are something like “proportion
of photons absorbed per millimeter of the medium.” In general the attenuation coeffi-
cient is nonnegative and its value depends on the substance involved. Bone has a very
high attenuation coefficient, air has a low coefficient, and water is somewhere in be-
tween. Different soft tissues have slightly different attenuation coefficients associated
with them.

Radiologists actually use a variant of the attenuation coefficient in their work. Devel-
oped by Godfrey Hounsfield, the Hounsfield unit associated with a medium is a number
that represents a comparison of the attenuation coefficient of the medium with that of
water. Specifically, the Hounsfield unit of a medium is

Hmedium :=
Amedium −Awater

Awater
, (1.1)

where A denotes the true attenuation coefficient. Table 1.1 gives the Hounsfield units of
some typical organic substances.
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substance Hounsfield units substance Hounsfield units
bone 1000 kidney 30
liver 40 to 60 cerebrospinal fluid 15

white matter 20 to 30 water 0
grey matter 37 to 45 fat −100 to −50

blood 40 air −1000
muscle 10–40

Table 1.1. Approximate Hounsfield units for certain organic substances.

Now suppose an X-ray beam passes through some medium located between the
position x and the position x + Δx, and suppose that A(x) is the attenuation coefficient
of the medium located there. Then the proportion of all photons that will be absorbed
in the interval [x,x + Δx] is p(x) = A(x) ·Δx. Thus the number of photons that will be
absorbed per second by the medium located in the interval [x,x + Δx] is p(x) ·N(x) =
A(x) ·N(x) ·Δx. If we multiply both sides by the energy level E of each photon, we see
that the corresponding loss of intensity of the X-ray beam over this interval is

Δ I ≈−A(x) · I(x) ·Δx.

Let Δx → 0 to get the differential equation known as Beer’s law:

dI
dx

= −A(x) · I(x) (1.2)

This may also be stated as follows.

Beer’s law. The rate of change of intensity per millimeter of a nonrefractive, monochro-
matic, zero-width X-ray beam passing through a medium is jointly proportional to the
intensity of the beam and to the attenuation coefficient of the medium. This condition
is expressed by the differential equation (1.2).

The differential equation (1.2) is separable and can be written as

dI
I

= −A(x)dx.

If the beam starts at location x0 with initial intensity I0 = I(x0) and is detected, after
passing through the medium, at the location x1 with final intensity I1 = I(x1), then we
get ∫ x1

x0

dI
I

= −
∫ x1

x0

A(x)dx,

from which it follows that
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ln(I(x1))− ln(I(x0)) = −
∫ x1

x0

A(x)dx.

Thus

ln

(
I1

I0

)
= −

∫ x1

x0

A(x)dx.

Multiplying both sides by −1 yields the result

∫ x1

x0

A(x)dx = ln

(
I0

I1

)
. (1.3)

This is a little bit “backwards” from what we often encounter in textbook problems
in differential equations. There, we would typically know the coefficient function and
use integration to find the function I. Here, however, we know the initial and final
values of I, and it is the coefficient function A, which expresses an essential property of
the medium being sampled by the X-ray, that is unknown. Thus, we see that from the
measured intensity of the X-ray we are able to determine not the values of A itself, but
rather the value of the integral of A along the line of the X-ray.

Example 1.1. For a simple example, suppose the attenuation-coefficient function A is
constant throughout a sample. Then, the amount of absorption along any given X-ray
beam depends only on the width of the sample along the line of the beam. So, if the
beam is travelling along the x-axis and enters the sample at x0, say, and leaves the
sample at x1, then the amount of absorption is A(x1 − x0). It follows from (1.3) that

A =
ln

(
I0
I1

)

x1 − x0
,

where I0 and I1 are the initial and final intensities of the X-ray.

Example 1.2. Suppose that

A(x) :=
{

1−|x| if |x| ≤ 1,
0 if |x| > 1,

and suppose that an X-ray with initial intensity I0 is emitted at the point x0 with x0 <−1,
passes through the sample, and has final intensity I1, as measured by a detector at the
point x1 with x1 > 1. Since ∫ x1

x0

(1−|x|)dx = 1,

we see that

ln

(
I0

I1

)
= 1,
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from which it follows that I1 = e−1 · I0. For instance, if I0 = 1, then I1 = e−1. Solving
the differential equation dI

dx = −A(x) · I(x), with the initial condition I0 = I(−1) = 1,
yields

I(x) :=

⎧⎪⎪⎨
⎪⎪⎩

1 if x ≤−1,
e−x− 1

2− 1
2 x2

if −1 ≤ x ≤ 0,
e−x− 1

2 + 1
2 x2

if 0 ≤ x ≤ 1,
e−1 if x ≥ 1.

Example 1.2: Alternate version. Suppose that the intersection of a sample with the
x-axis lies entirely inside the interval [−1,1] and suppose that an X-ray with initial
intensity I0 = 1 is emitted at the point x0 with x0 < −1, passes through the sample,
and has final intensity I1 = e−1, as measured by a detector at the point x1 with x1 > 1.
Moreover, imagine that we somehow knew that the intensity function of the beam was
given by

I(x) :=

⎧⎪⎪⎨
⎪⎪⎩

1 if x ≤−1,
e−x− 1

2− 1
2 x2

if −1 ≤ x ≤ 0,
e−x− 1

2 + 1
2 x2

if 0 ≤ x ≤ 1,
e−1 if x ≥ 1.

Beer’s law (1.2) now yields

A(x) :=
{

1−|x| if |x| ≤ 1,
0 if |x| > 1.

With actual X-ray detection equipment, though, we would not know the func-
tion I(x) at all values of x, only at the points of emission and detection. The con-
dition I1 = e−1 · I0 tells us only that

∫ x1
x0

A(x)dx = 1, not what formula A(x) has.

For instance, we would not be able to distinguish A1(x) :=
{

1−|x| if |x| ≤ 1,
0 if |x| > 1

from

A2(x) :=
{

1 if |x| ≤ 1/2,
0 if |x| > 1/2

or, for that matter, from any other attenuation function hav-

ing an integral equal to 1. A single X-ray can measure only the integral of the attenua-
tion function, not its shape.

What we can measure: We can design an X-ray emission/detection machine that can
measure the values of I0 and I1. Hence, from (1.3), we can compute

∫ x1
x0

A(x)dx, the
integral of the (unknown) attenuation-coefficient function along the path of the X-ray.

What we want to know: The value of A(x) at each location depends on the nature of
the matter located at the point x. It is precisely the function A itself that we wish to
know.

Two- or three-dimensional interpretation. Suppose a sample of material occupies a
finite region in space. At each point (x,y, z) within the sample, the material there has
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an attenuation coefficient value A(x,y,z). An X-ray beam passing through the sample
follows a line � from an initial point P (assumed to be outside the region) to a final point
Q (also assumed to be outside the region). The emission/detection machine measures
the initial and final intensities of the beam at P and Q, respectively, from which the
value ln(Iinitial/Ifinal) is calculated. According to (1.3), this is equal to the value of the
integral

∫
PQ A(x,y,z)ds, where ds represents arclength units along the segment PQ of

the line �. Thus, the measurement of each X-ray beam gives us information about the
average value of A along the path of the beam.

In our study of CT scans, we will consider a two-dimensional slice of the sample,
obtained as the intersection of the sample and some plane, which we will generally
assume coincides with the xy-plane. In this context, we interpret the attenuation-coef-
ficient function as a function A(x,y) of two variables within the specific slice. Indeed,
the word tomography is built on the Greek language root form tomos meaning “slice.”

The fundamental question of image reconstruction is this: Can we reconstruct the
function A(x,y,z) (within some finite region) if we know the average value of A along
every line that passes through the region?

1.3 Lines in the plane

For simplicity, let us assume that we are interested only in the cross-section of a sample
that lies in the xy-plane. Each X-ray will follow a segment of a line in the plane, so we
would like to have a way of cataloguing all such lines. For instance, every nonvertical
line has an equation of the form y = mx+b. So we could catalogue these lines using all
possible pairs (m,b). However, vertical lines would be excluded from this list. Instead,
we can classify all lines by adopting a “point–normal” approach, in which every line
in the plane is characterized by a pair consisting of a point that the line passes through
and a vector that is normal (i.e., perpendicular) to the line.

For a vector −→n normal to a given line �, there is some angle θ (with 0≤ θ < 2π , say)
such that −→n is parallel to the line radiating out from the origin at an angle of θ measured
counterclockwise from the positive x-axis. This line, at angle θ , is also perpendicular
to � and, hence, intersects � at some point whose coordinates in the xy-plane have the
form (t cos(θ), t sin(θ)) for some real number t. In this way, the line � is characterized
by the values of t and θ and is accordingly denoted by �t,θ . This may also be stated as
follows.

Definition 1.3. For any real numbers t and θ , the line �t,θ is the line that passes
through the point (t cos(θ), t sin(θ)) and is perpendicular to the unit vector −→n =
〈cos(θ), sin(θ)〉.

Every line in the plane can be characterized as �t,θ for some values of t and θ .
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For example, the line with Cartesian equation x + y =
√

2 is the same as the line
�1,π/4. Figure 1.2 shows an array of lines corresponding to eleven different values of t
at each of ten angles θ .

Two relationships are apparent, namely,

�t,θ+2π = �t,θ and �t,θ+π = �−t,θ for all t, θ .

This means that each line in the plane has many different representations of the form
�t,θ . To avoid this, we can use either of the sets

{�t,θ : treal,0 ≤ θ < π} or {�t,θ : t ≥ 0,0 ≤ θ < 2π} .

For the most part, we will use the former of these sets.
To parameterize a line �t,θ , observe that the unit vector 〈−sin(θ),cos(θ)〉 is perpen-

dicular to the vector 〈cos(θ), sin(θ)〉. Thus, every point on �t,θ has the form

〈t cos(θ), t sin(θ)〉+ s · 〈−sin(θ),cos(θ)〉

for some real number s. That is, the line �t,θ can be parameterized as (x(s),y(s)), where
x(s) = t cos(θ)−ssin(θ) and y(s) = t sin(θ)+scos(θ) for −∞ < s < ∞. Consequently,
�t,θ can be described as

�t,θ = {(t cos(θ)− ssin(θ), t sin(θ)+ scos(θ)) : −∞ < s < ∞} . (1.4)

Note that at every point (x(s),y(s)) on �t,θ we get x2 + y2 = t2 + s2.

Fig. 1.2. The figure shows the lines �t,θ for eleven different values of t and values of θ in increments
of π/10.

For an arbitrary point (a,b) in the plane and a given value for θ , there is a unique
value of t for which the line �t,θ passes through (a,b). More precisely, there are unique
values of both t and s for which a = t cos(θ)− ssin(θ) and b = t sin(θ) + scos(θ).
This is a system of two equations in the two unknowns, t and s. The solutions are
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t = acos(θ)+bsin(θ) and s =−asin(θ)+bcos(θ). Again, note that t2 +s2 = a2 +b2,
a fact that will be used later to implement a change of coordinates from the (x,y) system
to the (t, s) framework.

With the parameterization x(s) = t cos(θ)− ssin(θ) and y(s) = t sin(θ)+ scos(θ),
the arclength element along the line �t,θ is given by

√(
dx
ds

)2

+
(

dy
ds

)2

ds =
√

(−sin(θ))2 +(cos(θ))2 ds = ds.

Therefore, for a given function A(x,y) defined in the plane, we get
∫

�t,θ

A(x,y) =
∫ ∞

s=−∞
A(t cos(θ)− ssin(θ), t sin(θ)+ scos(θ))ds (1.5)

The value of this integral is exactly what an X-ray emission/detection machine mea-
sures when an X-ray is emitted along the line �t,θ .

We can now rephrase the fundamental question of image reconstruction to ask, “Can
we reconstruct the function A(x,y) (within some finite region of the plane) if we know
the value of

∫
�t,θ

A(x,y) for every line �t,θ ?”

1.4 Exercises

1.1. Consider a 3× 3 grid in which each of the nine squares is shaded either black or
white.

(a) Find all possible grids for which Rows 1 and 2 each have two white squares and
Row 3 has one white square; Column 1 has one white square and Columns 2 and 3
each have two white squares. (Figure 1.1 shows one solution.)

(b) Find all possible grids for which Rows 1 and 2 each have two white squares and
Row 3 has one white square; Columns 1 and 3 each have one white square and
Column 2 has three white squares.

1.2. Find two different 4×4 grids having the same “row and column scans;” that is, the
first row of the first pattern has the same number of white squares as the first row of the
second pattern has, and so on.

1.3. What additional information would help to identify a 3×3 or 4×4 grid uniquely?

1.4. What does the attenuation coefficient measure?

1.5. Referring to Table 1.1, why must an image be accurate to within about 10 Houns-
field units in order to be clinically useful?
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1.6. Explain in a few sentences, and with a minimum of mathematical detail, why Beer’s
law is a plausible model for X-ray attenuation.

1.7. Let

A(x) :=
{

1−|x| if |x| ≤ 1,
0 otherwise

and

I(x) :=

⎧⎪⎪⎨
⎪⎪⎩

1 if x ≤−1,
e−x− 1

2− 1
2 x2

if −1 ≤ x ≤ 0,
e−x− 1

2 + 1
2 x2

if 0 ≤ x ≤ 1,
e−1 if x ≥ 1.

(a) Evaluate
∫ 1

−1
A(x)dx and ln

(
I(−1)
I(1)

)
.

(b) Verify that these functions satisfy the differential equation

dI
dx

= −A(x) · I(x).

1.8. (a) Explain the parameterization

�t,θ = {(t cos(θ)− ssin(θ), t sin(θ)+ scos(θ)) : −∞ < s < ∞} .

(b) Prove that x2 + y2 = t2 + s2 at every point (x,y) on �t,θ .

1.9. Find values of t and θ for which the line �t,θ is the same as the line with equation√
3x+ y = 4.

1.10. Explain why �t,θ = �−t,θ+π for all t and all θ . (A sketch might help.)

1.11. (a) Given a, b, and θ , find t and s so that

(a,b) = (t cos(θ)− ssin(θ), t sin(θ)+ scos(θ)).

(b) Show that t2 + s2 = a2 +b2 for the values you found in part (a).

1.12. For a fixed value of R > 0, let f (x,y) :=
{

1 if x2 + y2 ≤ R2,
0 otherwise.

Show that
∫

�t,θ

f ds =
{

2
√

R2 − t2 if |t| ≤ R,
0 if |t| > R.

1.13. Discussion: Why does the fundamental question of image reconstruction require
that we consider so many lines? Why would a single set of parallel lines not suffice?
(Hint: Think about the game we played with the 3-by-3 grid of black and white squares.)
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The Radon Transform

2.1 Definition

For a given function f defined in the plane, which may represent, for instance, the
attenuation-coefficient function in a cross section of a sample, the fundamental question
of image reconstruction calls on us to consider the value of the integral of f along a
typical line �t,θ . For each pair of values of t and θ , we will integrate f along a different
line. Thus, we really have a new function on our hands, where the inputs are the values
of t and θ and the output is the value of the integral of f along the corresponding line
�t,θ . But even more is going on than that because we also wish to apply this process to
a whole variety of functions f . So really we start by selecting a function f . Then, once
f has been selected, we get a corresponding function of t and θ . Schematically,

input f 	→ output

⎧⎪⎨
⎪⎩(t,θ) 	→

∫

�t,θ

f ds

⎫⎪⎬
⎪⎭ .

This multi-step process is called the Radon transform, named for the Austrian math-
ematician Johann Karl August Radon (1887–1956) who studied its properties. For
the input f , we denote by R( f ) the corresponding function of t and θ shown in the
schematic. That is, we make the following definition.

Definition 2.1. For a given function f , whose domain is the plane, the Radon transform
of f is defined, for each pair of real numbers (t,θ), by

R f (t,θ) :=
∫

�t,θ

f ds =
∫ ∞

s=−∞
f (t cos(θ)− ssin(θ), t sin(θ)+ scos(θ))ds. (2.1)

T.G. Feeman, The Mathematics of Medical Imaging, Springer Undergraduate Texts 11
in Mathematics and Technology, DOI 10.1007/978-0-387-92712-1 2,
c© Springer Science+Business Media, LLC 2010
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A few immediate observations are that (i) both f and R f are functions; (ii) f is
a function of the Cartesian coordinates x and y while R f is a function of the polar
coordinates t and θ ; (iii) R f (t,θ) is a number (the value of an integral); (iv) in the
integral on the right, the variable of integration is s, while the values of t and θ are
preselected and so should be treated as “constants” when evaluating the integral.

2.2 Examples

Example 2.2. As an example, let f be the function defined by

f (x,y) :=
{

1−
√

x2 + y2 if x2 + y2 ≤ 1,
0 if x2 + y2 > 1.

(2.2)

The graph of f is a cone, shown in Figure 2.1. We have already observed that, on the
line �t,θ , we have

x2 + y2 = (t cos(θ)− ssin(θ))2 +(t sin(θ)+ scos(θ))2 = t2 + s2.

It follows that, on the line �t,θ , the function f is given by

f (t cos(θ)− ssin(θ), t sin(θ)+ scos(θ)) :=
{

1−√
t2 + s2 if t2 + s2 ≤ 1,

0 if t2 + s2 > 1.
(2.3)

From this, we see that the value of R f (t,θ) depends only on t and not on θ and that
R f (t,θ) = 0 whenever |t| > 1. For a fixed value of t such that |t| ≤ 1, the condition
t2 + s2 ≤ 1 will be satisfied provided that s2 ≤ 1− t2. Thus, for any value of θ and for
t such that |t| ≤ 1, we have

f (t cos(θ)− ssin(θ), t sin(θ)+ scos(θ))

:=
{

1−√
t2 + s2 if −√

1− t2 ≤ s ≤√
1− t2,

0 otherwise;
(2.4)

whence ∫
�t,θ

f ds =
∫ √

1−t2

s=−√
1−t2

(
1−

√
t2 + s2

)
ds. (2.5)

This integral requires a trigonometric substitution for its evaluation. Sparing the details
for now, we have

∫ √
1−t2

s=−√
1−t2

(
1−

√
t2 + s2

)
ds =

√
1− t2 − 1

2
t2 ln

(
1+

√
1− t2

1−√
1− t2

)
. (2.6)
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10.50−0.5−1
t

0

1

0.2
0.4
0.6
0.8

Fig. 2.1. The figure shows the cone defined in (2.2) and the graph of its Radon transform for any
fixed value of θ .

In conclusion, we have shown that the Radon transform of this function f is given by

R f (t,θ) :=

{√
1− t2 − 1

2 t2 ln
(

1+
√

1−t2

1−√
1−t2

)
if −1 ≤ t ≤ 1,

0 if |t| > 1.
(2.7)

In this case, where R f is independent of θ , the value of R f (t,θ) corresponds to the
area under the vertical cross-section of the cone defined by z = f (t,y). Several of these
cross-sections are visible in Figure 2.1.

Example 2.3. Consider a crescent-shaped region inside the disc x2 +y2 = 1/4 and out-
side the disc (x−1/8)2 +y2 = 9/64. Assign density 1 to points in the crescent, density
1/2 to points inside the smaller disc, and density 0 to points outside the larger disc. In
other words, the attenuation function is

A(t,θ) :=

⎧⎨
⎩

1 if x2 + y2 ≤ 1/4 and (x−1/8)2 + y2 > 9/64;
0.5 if (x−1/8)2 + y2 ≤ 9/64;
0 if x2 + y2 > 1/4.

(2.8)

0
x−0.2−0.4−0.6 0.2 0.4 0.6

0 y

−0.2

−0.4

−0.6

0.2

0.4

0.6
−1 −0.5 0.50 1

t

0

1

2

3

0.5

1.5

2.5

θ

Fig. 2.2. The figure shows the graph of the attenuation function A defined in (2.8), alongside a
sinogram of its Radon transform RA(t,θ).
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Figure 2.2 shows the graph of this attenuation function alongside a graph of its
Radon transform in the (t,θ) plane. Such a graph is called a sinogram and essentially
depicts all of the data generated by the X-ray emission/detection machine for the given
slice of the sample. The function values are shown in greyscale, with white correspond-
ing to 1, neutral grey to 0.5, and black to 0. Figure 2.3 shows graphs of the Radon
transform for the angles θ = 0 and θ = π/3.

−0.2−0.4 0.2 0.4
t

0.2

0.4

0.6

0.8

−0.2−0.4 0.2 0.4
t

0.2

0.4

0.6

0

Fig. 2.3. For the function A defined in (2.8), the figure shows graphs of its Radon transform RA(t,0)
(left) and RA(t,π/3) (right), for −1/2 ≤ t ≤ 1/2.

2.3 Linearity

Suppose that two functions f and g are both defined in the plane. Then so is the function
f + g. Since the integral of a sum of two functions is equal to the sum of the integrals
of the functions separately, it follows that we get, for every choice of t and θ ,

R( f +g)(t,θ) =
∫ ∞

s=−∞
( f +g)(t cos(θ)− ssin(θ), t sin(θ)+ scos(θ))ds

=
∫ ∞

s=−∞
{ f (t cos(θ)− ssin(θ), t sin(θ)+ scos(θ))

+g(t cos(θ)− ssin(θ), t sin(θ)+ scos(θ))}ds

=
∫ ∞

s=−∞
f (t cos(θ)− ssin(θ), t sin(θ)+ scos(θ))ds

+
∫ ∞

s=−∞
g(t cos(θ)− ssin(θ), t sin(θ)+ scos(θ))ds

= R f (t,θ)+Rg(t,θ).

In other words, R( f +g) = R f +Rg as functions.
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Similarly, when a function is multiplied by a constant and then integrated, the result
is the same as if the function were integrated first and then that value multiplied by
the constant; i.e.,

∫
α f = α

∫
f . In the context of the Radon transform, this means that

R(α f ) = αR f .
We now have proven the following proposition.

Proposition 2.4. For two functions f and g and any constants α and β ,

R(α f +βg) = αR f +βRg. (2.9)

In the language of linear algebra, we say that the Radon transform is a linear trans-
formation; that is, the Radon transform R maps a linear combination of functions to
the same linear combination of the Radon transforms of the functions separately. We
also express this property by saying that “R preserves linear combinations.”

Example 2.5. For a fixed value of R, define

FR(x,y) :=
{

1 if x2 + y2 ≤ R2,
0 otherwise.

From the exercises, we know that

R(FR)(t,θ) =
{

2
√

R2 − t2 if |t| ≤ R,
0 if |t| > R.

Now consider the function

f (x,y) :=

⎧⎨
⎩

0.5 if x2 + y2 ≤ 0.25,
1.0 if 0.25 < x2 + y2 ≤ 1.0,
0 otherwise.

That is, f = F1 − (0.5)F0.5. By (2.9), it follows that

R f (t,θ) = R(F1)(t,θ)− (0.5)R(F0.5)(t,θ)

=

⎧⎨
⎩

2
√

1− t2 −
√

(0.25)− t2 if |t| ≤ 0.5,
2
√

1− t2 if (0.5) < |t| ≤ 1,
0 if |t| > 1.

2.4 Phantoms

The fundamental question of image reconstruction asks whether a picture of an attenu-
ation-coefficient function can be generated from the values of the Radon transform of
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that function. We will see eventually that the answer is “Yes” if all values of the Radon
transform are available, but only “Approximately yes” in practice, where only a finite set
of values of the Radon transform are measured by a scanning machine. Consequently,
the nice solution that works in the presence of full information will splinter into a variety
of approximation methods that can be implemented when only partial information is at
hand.

One method for testing the accuracy of a particular image reconstruction algorithm,
or for comparing algorithms, is simply to apply each algorithm to data taken from an
actual human subject. The drawback of this approach is that usually we don’t know
exactly what we ought to see in the reconstructed image. That is what we are trying to
find out by creating an image in the first place. But without knowing what the real data
are, there is no way to determine the accuracy of any particular image. To get around
this, we can apply algorithms to data taken from a physical object whose internal struc-
ture is known. That way, we know what the reconstructed image ought to look like and
we can recognize inaccuracies in a given algorithm or identify disparities between dif-
ferent algorithms. Nonetheless, this approach can be misleading. Although the internal
structure of the object is known, there may be errors in the data that were collected to
represent the object. In turn, these errors may lead to errors in the reconstructed image.
We will not be able to distinguish these flaws from errors caused by the algorithm it-
self. To resolve this dilemma, Shepp and Logan (see [40]) introduced the concept of
a mathematical phantom. This is a simulated object whose structure is completely de-
fined by mathematical formulas. Thus, no errors occur in collecting the data from the
object. When an algorithm is applied to produce a reconstructed image of the phantom,
all inaccuracies are due to the algorithm. This makes it possible to compare different
algorithms in a meaningful way.

Since measurement of the Radon transform of an object forms the basis for creating
a CT image of the object, it makes sense to use phantoms for which the Radon transform
is known exactly. We can then test a proposed algorithm by seeing how well it handles
the data from such a phantom. For example, we have computed the Radon transform
of a circular disc of constant density centered at the origin. Using the linearity of R,
we can compute the Radon transform of any collection of nested discs, each having
constant density, centered at the origin. Such a phantom is too simplistic, though, to
serve as a useful model for any serious application. An actual slice of brain tissue
is likely to include interesting features in a variety of shapes and sizes located in all
regions within the slice, not only near the center. To address these concerns, Shepp and
Logan developed the phantom shown in Figure 2.4.

The Shepp–Logan phantom is composed of eleven ellipses of various sizes, eccen-
tricities, and locations. (The MATLABR version shown here does not include an ellipse
that models a blood clot in the lower right near the boundary.) The densities are as-
signed so that they fall into the ranges typically encountered in a clinical setting. Since
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Fig. 2.4. The Shepp–Logan phantom is used as a mathematical facsimile of a brain for testing image
reconstruction algorithms. This version of the phantom is stored in MATLABR. On the right is a
sinogram of the phantom’s Radon transform, with θ in increments of π/18 (10◦).

we can compute exactly the Radon transform of any ellipse, the Shepp–Logan phantom
has proven to be a reliable model on which to test reconstruction algorithms.

2.5 The domain of R

As we can see from the definition (2.1), the Radon transform R f of a function f is
defined provided that the integral of f along �t,θ exists for every pair of values of t and
θ . Each of these integrals is ostensibly an improper integral evaluated on an infinite
interval. Thus, in general, the function f must be integrable along every such line, as
discussed in greater detail in Appendix A.

In the context of medical imaging, the function f represents the density or atten-
uation-coefficient function of a slice of whatever material is being imaged. Thus, the
function has compact support, meaning that there is some finite disc outside of which
the function has the value 0. In this case, the improper integrals

∫
�t,θ

f ds become regular
integrals over finite intervals. The only requirement, then, for the existence of R f is that
f be integrable over the finite disc on which it is supported. This will be the case, for
instance, if f is piecewise continuous on the disc.

For a wealth of information about the Radon transform and its generalizations, as
well as an extensive list of references on this topic, see the monograph [20].
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2.6 Exercises

2.1. Evaluate the integral
∫ √

1−t2

s=−√
1−t2

(
1−

√
t2 + s2

)
ds from (2.5).

2.2. Use a computer algebra system to generate pictures such as those in Figures 2.1
and 2.2.

2.3. Consider the function f (x,y) :=
{

1 if |x| ≤ 1 and |y| ≤ 1,
0 otherwise.

(That is, f has the

value 1 inside the square where −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1, and the value 0 outside
this square.)

(a) Sketch the graph of the function R f (t,0), the Radon transform of f corresponding
to the angle θ = 0.

(b) Sketch the graph of the function R f (t,π/4), the Radon transform of f correspond-
ing to the angle θ = π/4.



3

Back Projection

3.1 Definition and properties

Let us begin the process of trying to recover the values of an attenuation-coefficient
function f (x,y) from the values of its Radon transform R f .

Suppose we select some point in the plane, call it (x0,y0). This point lies on many
different lines in the plane. In fact, for each value of θ , there is exactly one real number
t for which the line �t,θ passes through (x0,y0). Specifically, the value t = x0 cos(θ)+
y0 sin(θ) is the one that works, which is to say that, for any given values of x0, y0, and
θ , the line �(x0 cos(θ)+y0 sin(θ)),θ passes through the point (x0,y0). The proof of this fact
is left as an exercise.

Figure 3.1 shows a network of back-projection lines through a selection of points in
the first quadrant.

Fig. 3.1. For an array of points in the first quadrant, the figure shows the network of the back-projec-
tion lines corresponding to values of θ in increments of π/9.
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In practice, whatever sort of matter is located at the point (x0,y0) in some sample
affects the intensity of any X-ray beam that passes through that point. We now see that
each such beam follows a line of the form �(x0 cos(θ)+y0 sin(θ)),θ for some angle θ . In other
words, the attenuation coefficient f (x0,y0) of whatever is located at the point (x0,y0)
is accounted for in the value of the Radon transform R f (x0 cos(θ)+ y0 sin(θ),θ), for
each angle θ .

The first step in recovering f (x0,y0) is to compute the average value of these line
integrals averaged over all lines that pass through (x0,y0). That is, we compute

1
π

∫ π

θ=0
R f (x0 cos(θ)+ y0 sin(θ),θ)dθ . (3.1)

Formally, this integral provides the motivation for a transform called the back pro-
jection, or the back-projection transform.

Definition 3.1. Let h = h(t,θ) be a function whose inputs are polar coordinates. The
back projection of h at the point (x,y) is defined by

Bh(x,y) :=
1
π

∫ π

θ=0
h(xcos(θ)+ ysin(θ),θ)dθ . (3.2)

Note that the inputs for Bh are Cartesian coordinates while those of h are polar coor-
dinates.

The proof of the following proposition is left as an exercise.

Proposition 3.2. The back projection is a linear transformation. That is, for any two
functions h1 and h2 and arbitrary constants c1 and c2,

B(c1h1 + c2h2)(x,y) = c1Bh1(x,y)+ c2Bh2(x,y) (3.3)

for all values of x and y.

Example 3.3. Back projection of R. In the context of medical imaging, the integral in
(3.1) represents the back projection of the Radon transform of the attenuation-coeffi-
cient function f :

BR f (x,y) =
1
π

∫ π

θ=0
R f (xcos(θ)+ ysin(θ),θ)dθ . (3.4)

3.2 Examples

Before we rush to the assumption that (3.4) gives us f (x0,y0) back again, let us analyze
more closely. Each of the numbers R f (x0 cos(θ)+y0 sin(θ),θ), themselves the values
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of integrals, really measures the total accumulation of the attenuation-coefficient func-
tion f along a particular line. Hence, the value of the Radon transform along a given
line would be the same if all of the matter there were replaced with a homogeneous
sample whose attenuation coefficient was the average of the actual sample. The integral
in (3.4) is computing the average value of those averages. Thus, we see that this does
not give us the value of f (x0,y0). Instead, it gives us an “averaged out” or “smoothed
out” version of the attenuation coefficient. For this reason, (3.4) is only a first step in
recovering f .

Example 3.4. Suppose f1 is the attenuation-coefficient function corresponding to a disc
of radius 1/2 centered at the origin and with constant density 1. Then, for every line
�0,θ through the origin, we have R f1(0,θ) = 1. Consequently, BR f1(0,0) = 1.

Now suppose that f2 is the attenuation-coefficient function for a ring of width 1/2
consisting of all points at distances between 1/4 and 3/4 from the origin and with
constant density 1 in this ring. Then, again, for every line �0,θ through the origin, we
get R f2(0,θ) = 1. So, again, BR f2(0,0) = 1.

Thus, BR f1(0,0) = BR f2(0,0) = 1, even though f1(0,0) = 1 and f2(0,0) = 0.
This illustrates the fact that the back projection of the Radon transform of a function
does not necessarily reproduce the original function.

Example 3.5. We previously considered the function

f (x,y) :=
{

1 if x2 + y2 ≤ 1,
0 otherwise

and computed that

R f (t,θ) =
∫

�t,θ

f ds =
{

2
√

1− t2 if |t| ≤ 1,
0 if |t| > 1.

From this it follows that, for each point (x,y), we have

R f (xcos(θ)+ ysin(θ),θ)

=
{

2
√

1− (xcos(θ)+ ysin(θ))2 if |xcos(θ)+ ysin(θ)| ≤ 1,
0 if |xcos(θ)+ ysin(θ)| > 1.

It can be pretty difficult to figure out which values of θ satisfy the inequality
|xcos(θ) + ysin(θ)| ≤ 1 for an arbitrary point (x,y). However, the maximum possi-
ble value of the expression |xcos(θ)+ ysin(θ)| is

√
x2 + y2, and we already know that

we only care about points for which
√

x2 + y2 ≤ 1. Hence, |xcos(θ) + ysin(θ)| ≤ 1
will hold for all the points (x,y) that we care about.

Now apply the back projection. Assuming, as we are, that x2 + y2 ≤ 1, then
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BR f (x,y) =
1
π

∫ π

θ=0
R f (xcos(θ)+ ysin(θ),θ)dθ

=
1
π

∫ π

θ=0
2
√

1− (xcos(θ)+ ysin(θ))2 dθ . (3.5)

As Figure 3.2 illustrates, where the graph of f is a circular column of height 1 with
a flat top, the graph of BR f is a circular column with the top rounded off. This is due
to the “smoothing” effect of the back projection.

Fig. 3.2. For a test function whose graph is a cylinder or a cone, the back projection of the Radon
transform of the function yields a rounded-off cylinder or a rounded-off cone.

Example 3.6. This time, let

f (x,y) :=
{

1−
√

x2 + y2 if x2 + y2 ≤ 1,
0 otherwise.

We previously computed that, for −1 ≤ t ≤ 1,

R f (t,θ) =
∫ ∞

s=−∞
f (t cos(θ)− ssin(θ), t sin(θ)+ scos(θ))ds

=
∫ √

1−t2

s=−√
1−t2

(
1−

√
t2 + s2

)
ds

=
√

1− t2 − 1
2

t2 ln

(
1+

√
1− t2

1−√
1− t2

)
.

As in the previous example, the inequality |xcos(θ)+ysin(θ)| ≤ 1 is satisfied for all
values of θ as long as we only look at points (x,y) in the unit disc. With that assumption,
applying the back projection yields
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BR f (x,y) =
∫ π

θ=0
R f (xcos(θ)+ ysin(θ),θ)dθ

=
∫ π

θ=0

{√
1− (tθ (x,y))2 − 1

2
(tθ (x,y))2 ln

(
1+

√
1− (tθ (x,y))2

1−
√

1− (tθ (x,y))2

)}
dθ ,

where, for brevity, tθ (x,y) = xcos(θ)+ ysin(θ). If we settle for the use of a Riemann
sum, then we can approximate the values of BR f (x,y) and generate an approximate
graph of BR f (x,y) over the unit disc.

In this example, shown in Figure 3.2, the graph of f is a cone while the graph of
BR f is a cone that has been rounded off, again illustrating the smoothing effect of the
back projection.

In the last two examples above, we restricted the back projection to points (x,y)
for which x2 + y2 ≤ 1. For those points, the inequality |xcos(θ)+ ysin(θ)| ≤ 1 holds
for every value of θ . In reality, even for points outside the unit circle, that is, even if
x2 + y2 > 1, there are always some values of θ for which |xcos(θ) + ysin(θ)| ≤ 1.
(For instance, this follows from Exercise 3.2 below.) For those values of θ , the corre-
sponding line �(xcos(θ)+ysin(θ)),θ passes through the unit disc, and so provides a nonzero
value of R f (xcos(θ)+ysin(θ),θ). In turn, this nonzero value of the Radon transform
contributes to a nonzero value of the back projection BR f (x,y). Thus, in the exam-
ples above, we have effectively truncated the back projection by “filtering out” points
outside the unit circle and excluding them from the smoothing process. The resulting
images of BR f are actually closer to the original f than if we had not done this fil-
tering. This analysis raises the questions of how we can describe this filtering process
mathematically and of whether there are other forms of filtering that will enhance the
effort to recover the original attenuation-coefficient function.

Example 3.7. A phantom. As a final example for now, Figure 3.3 shows the back pro-
jection of the Radon transform of the Shepp–Logan phantom, introduced in Figure 2.4.
This should reinforce the fact that the back projection is not, by itself, the inverse of
the Radon transform. Nonetheless, as we shall see in Chapter 6, the back projection is
a crucial ingredient in the image reconstruction process.

3.3 Exercises

3.1. Verify that, for given values of a, b, and θ , the line �(acos(θ)+bsin(θ)),θ passes
through the point (a,b).

3.2. Verify that, for every pair of real numbers a and b, the set of points in the plane
that satisfy the polar-coordinate equation



24 3 Back Projection

Fig. 3.3. The back projection of the Radon transform of the Shepp–Logan phantom.

r = (acos(θ)+bsin(θ)) for 0 ≤ θ ≤ π

forms a circle that passes through the origin as well as through the point with Cartesian
coordinates (a,b). Find the radius of the circle and the location of its center.

3.3. According to Exercise 3.2, for a function F = F(r,θ) whose inputs are polar co-
ordinates, the value of BF(x,y) is the average value of the function F on the circle
determined by the polar-coordinate equation r = (xcos(θ)+ ysin(θ)) for 0 ≤ θ ≤ π .
Use this to compute the following back projections.

(i) Compute Bg(x,y), where g(r,θ) := r cos(θ).
(ii) Compute Bh(x,y), where h(r,θ) := r sin(θ).

3.4. Prove Proposition 3.2, which asserts that the back projection is a linear transforma-
tion. That is, show that, for any two functions h1 and h2 and arbitrary constants c1 and
c2,

B(c1h1 + c2h2)(x,y) = c1Bh1(x,y)+ c2Bh2(x,y)

for all values of x and y.
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Complex Numbers

There is no real number a for which a2 +1 = 0. In order to develop an expanded number
system that includes solutions to this simple quadratic equation, we define the “imag-
inary number” i =

√−1. That is, this new number i is defined by the condition that
i2 +1 = 0.

Since i2 = −1, it follows that i3 = i2 · i = −1 · i = −i. Similarly, i4 = i3 · i = −i · i =
−i2 = −(−1) = 1, and i5 = i4 · i = 1 · i = i.

As a quick observation, notice that the equation a4 = 1 now has not only the familiar
solutions a =±1 but also two “imaginary” solutions a =±i. Thus, there are four fourth
roots of unity, namely, ±1 and ±i. The inclusion of the number i in our number system
provides us with new solutions to many simple equations.

4.1 The complex number system

The complex number system, denoted by C, is defined to be the set

C = {a+b · i : a and b are real numbers} .

To carry out arithmetic operations in C, use the usual rules of commutativity, associa-
tivity, and distributivity, along with the definition i2 = −1. Thus, (a + bi)+ (c + di) =
(a + c) + (b + d)i and (a + bi) · (c + di) = (ac− bd) + (ad + bc)i. Also, −(a + bi) =
−a+(−b)i. Momentarily, we will look at division of one complex number by another.

A geometric view of C. Each complex number z = a + bi is determined by two real
numbers. The number a is called the real part of z and is denoted by ℜz = a, while the
number b is called the imaginary part and is denoted by ℑz = b. (It is important to keep
in mind that the imaginary part of a complex number is actually a real number, which is
the coefficient of i in the complex number.) In this sense, the complex number system
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is “two-dimensional,” and so can be represented geometrically in the xy-plane, where
we plot the real part of a complex number as the x-coordinate and the imaginary part of
the complex number as the y-coordinate.

A real number a can also be written as a = a + 0 · i, and so corresponds to the
point (a,0) on the x-axis, which is known therefore as the real axis. Similarly, a purely
imaginary number b · i = 0+b · i corresponds to the point (0,b) on the y-axis, which is
called the imaginary axis.

The distance to the origin from the point (a,b), corresponding to the complex num-
ber a+bi, is equal to

√
a2 +b2. Accordingly, we make the following definition.

Definition 4.1. The modulus of the complex number a + bi, denoted by |a + bi|, is de-
fined by

|a+bi| =
√

a2 +b2. (4.1)

The modulus of a complex number is analogous to the absolute value of a real num-
ber. Indeed, for a real number a = a+0 · i, we get that |a+0 · i|=√

a2 +02 = |a| in the
usual sense. Note also that |a+bi| = 0 if, and only if, a = b = 0. A central observation
is that

(a+bi) · (a−bi) = a2 +b2 = |a+bi|2.
With this in mind, we make another definition.

Definition 4.2. The conjugate of a complex number a+bi, denoted by a+bi, is defined
by

a+bi = a−bi. (4.2)

The central property, to repeat, is that

(a+bi) · (a+bi) = (a+bi) · (a−bi) = a2 +b2 = |a+bi|2. (4.3)

The conjugate of a complex number is the key ingredient when it comes to the
arithmetic operation of division. For example, notice that

(5+12i)(5−12i) = 52 +122 = 132 = 169.

It follows from this that

1
5+12i

=
5−12i

169
=

5
169

− 12
169

i,

whence

3+4i
5+12i

= (3+4i) · 1
5+12i

= (3+4i)
(

5
169

− 12
169

i

)
=

63
169

− 16
169

i.

In general, we get that
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1
a+bi

=
1

a2 +b2 (a−bi).

This enables us to divide any complex number by (a + bi), provided that a and b are
not both 0. The act of dividing by the nonzero complex number (a+bi) is re-expressed
as multiplication by (a−bi) and division by the nonzero real number (a2 +b2).

4.2 The complex exponential function

Consider these well-known Taylor series:

cos(x) =
∞

∑
n=0

(−1)n x2n

(2n)!
= 1− x2

2!
+

x4

4!
− x6

6!
+ · · · ,

sin(x) =
∞

∑
n=0

(−1)n x2n+1

(2n+1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ · · · ,

and

exp(x) = ex =
∞

∑
n=0

xn

n!
= 1+ x+

x2

2!
+

x3

3!
+

x4

4!
+ · · · .

Substitute x = iθ (where θ is assumed to be a real number) into the series for exp(x) to
get (formally)

exp(iθ) = eiθ =
∞

∑
n=0

(iθ)n

n!

= 1+(iθ)+
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
+ · · ·

= 1+ iθ − θ 2

2!
− i

θ 3

3!
+

θ 4

4!
+ i

θ 5

5!
−·· ·

=
[

1− θ 2

2!
+

θ 4

4!
− θ 6

6!
+ · · ·

]
+ i ·

[
θ − θ 3

3!
+

θ 5

5!
−·· ·

]

= cos(θ)+ i · sin(θ).

Euler’s formula. The remarkable relationship

eiθ = cos(θ)+ i · sin(θ) (4.4)

between an imaginary power of e and the sine and cosine functions is known as Euler’s
formula after its discoverer, Leonhard Euler (1707–1783).

Some examples of Euler’s formula that are of special interest are
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eiπ = cos(π)+ isin(π) = −1+ i(0) = −1,

eiπ/2 = cos(π/2)+ isin(π/2) = 0+ i(1) = i, and

e2πi = cos(2π)+ isin(2π) = 1.

In general, for any real number θ , ℜ(eiθ ) = cos(θ) and ℑ(eiθ ) = sin(θ). Hence,

∣∣eiθ ∣∣ =
√

cos2(θ)+ sin2(θ) = 1

regardless of the value of θ .
Geometrically, for real numbers r and θ , we get

reiθ = r(cos(θ)+ isin(θ)) = r cos(θ)+ ir sin(θ)

so that the complex number reiθ corresponds to the point in the xy-plane with Cartesian
coordinates (r cos(θ), r sin(θ)). This same point has polar coordinates r and θ . For
this reason, the form reiθ is called the polar form of the complex number (r cos(θ)+
isin(θ)).

Observe that
∣∣reiθ

∣∣ = |r|. So, |r| is the modulus of reiθ . The number θ , viewed as an
angle now, is called the argument of the complex number reiθ .

A simple computation shows that (reiθ ) · (Reiφ ) = r · R · ei(θ+φ). Thus, when we
multiply two complex numbers, expressed here in their polar forms, the modulus of the
product is equal to the product of the individual moduli and the argument of the product
is the sum of the individual arguments.

DeMoivre’s law. When the equation (eiθ )n = einθ is translated into standard complex
number form, we get

[cos(θ)+ isin(θ)]n = cos(nθ)+ isin(nθ). (4.5)

This is called DeMoivre’s law.

It is just a short step now to define the exponential function for every complex num-
ber. Namely, for any complex number z = a+bi,

ez = ea+bi = ea · ebi = ea · (cos(b)+ isin(b)). (4.6)

The complex exponential function has many interesting and important properties,
not least of which is that it is a conformal mapping. (See [15] and [37], for example.)
For our purposes, the periodicity property of the exponential function is central.
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4.3 Wave functions

Waves, periodicity, and frequency. For a fixed real number ω , the functions t 	→
cos(ω t) and t 	→ sin(ω t) have period 2π/ω and frequency ω/(2π). If the value of
ω is large, then these functions have high frequency and short wavelength; lower val-
ues of ω yield functions with longer waves and lower frequencies.

For a given real number ω , consider the function Eω(t) = eiω t . Then

Eω(t +2π/ω) = eiω(t+2π/ω) = eiω t+2πi = eiω t · e2πi = eiω t = Eω(t),

where we have used the fact that e2πi = 1. Thus, the function Eω is periodic with period
2π/ω and frequency ω/(2π).

Another point of view is to see that

Eω(t) = eiω t = cos(ω t)+ isin(ω t)

which is a sum of two periodic functions each having period 2π/ω . So the sum also is
periodic with that same period.

A signal, such as a radio, light, or sound wave, can, in principle, be decomposed into
its components of specific frequencies. For example, we might try to decompose the
sound wave from a musical instrument into the high notes, the mid-tones, bass, and so
on. That is, a signal, viewed as a function propagated over time, might also be viewed
as a composite of functions of the form cos(ω t) and sin(ω t), or, more compactly,
Eω(t) = eiω t , for various values of ω . The pertinent issue becomes how to determine
which values of ω correspond to the different frequency components of a given signal
f (t), and, for each such ω , to find the amplitude of the associated component.

Fourier analysis. As a first step toward finding the different frequencies that make up
a given signal, consider the “harmonic frequencies” n/(2π) where n is an integer. The
basic periodic functions having these frequencies are of the form En(t) = eint . Two basic
computations involving these functions are the following.

For m �= n,
∫ 2π

0
eimt · e−int dt =

∫ 2π

0
ei(m−n)t dt =

ei(m−n)t

i(m−n)

∣∣∣∣∣
2π

0

= 0,

since ei(m−n)2π = e0 = 1.

For m = n,
∫ 2π

0
eint · e−int dt =

∫ 2π

0
e0 dt = 2π .

These computations mean that, if a signal has the form
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f (t) = ∑
n∈Λ

cneint

for integers n in some set Λ , then the amplitudes {cn} are given by

cn =
1

2π

∫ 2π

0
f (t) · e−int dt for each n ∈ Λ .

Applying this analysis to an arbitrary function f that is periodic on the interval
0 ≤ t ≤ 2π , we define the nth Fourier coefficient of f by

f̂ (n) =
1

2π

∫ 2π

0
f (t) · e−int dt. (4.7)

We have in mind that f somehow can be represented, at least on the interval 0 ≤ t ≤ 2π ,
by the sum ∑ f̂ (n)eint . Determining precisely when such a representation is valid (and
even what is meant by “representation” or “valid”) is part of the subject of Fourier
series, initiated in 1811 by Jean-Baptiste Joseph Fourier (1768–1830).

In our analysis of X-ray attenuation-coefficient functions, we will use a different
tool, also pioneered by Fourier, called the Fourier transform. The Fourier transform is
analogous to the Fourier series but it allows for all possible frequencies and does not
assume that the signal is periodic.

4.4 Exercises

4.1. (a) Let z and w be complex numbers. Show that (z+w) = z+w and that z ·w = z ·w.

(b) Show that reiθ = re−iθ .

(c) Use (4.3) to express
1

3+4i
in the form a+bi.

4.2. Evaluate the integral
∫ 2π

0
eiθ dθ .

4.3. (a) Show that
∫ ∞

0
e−λx · e−iωx dx =

λ − iω
λ 2 +ω 2 , where λ and ω are real numbers with

λ �= 0.

(b) Use part (a) to show that
∫ ∞

−∞
e−λ |x| · e−iωx dx =

2λ
λ 2 +ω 2 .

4.4. (a) Use Euler’s formula to show that

e−iωT − eiωT = −2isin(ωT )

for all real numbers ω and T .
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(b) Now show that
∫ T

−T
e−iωx dx = 2

sin(ωT )
ω

for ω �= 0.

(c) Plot the graph of S(ω) = 2
sin(ωT )

ω
, as a function of the real variable ω , for T = 1,

for T = 0.5, and for T = 0.2. (Note that setting S(0) = 2T yields a continuous
function on the real line.)

4.5. Use a change of variables to show that
∫ ∞

−∞
f (x−α)e−iωx dx = e−iωα

∫ ∞

−∞
f (x)e−iωx dx

for all real numbers ω and α .
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The Fourier Transform

5.1 Definition and examples

For a given function f such that
∫ ∞
−∞ | f (x)|dx < ∞, the Fourier transform of f is defined,

for each real number ω , by

F f (ω) :=
∫ ∞

−∞
f (x)e−iωx dx. (5.1)

The idea behind this definition is that, for each value of ω , the value of F f (ω)
captures the component of f that has the frequency ω/(2π) (and period 2π/ω).

Example 5.1. The Fourier transform of a Gaussian. Let f (x) = e−Ax2
, for some pos-

itive constant A > 0. Then we have

F f (ω) =
√

π
A

e−
ω 2
4A . (5.2)

To prove this, we first need the following fact.

Lemma 5.2. For A �= 0, we have
∫ ∞

−∞
e−Ax2

dx =
√

π
A

.

Proof. Squaring the integral, we get

(∫ ∞

−∞
e−Ax2

dx

)2

=
(∫ ∞

−∞
e−Ax2

dx

)(∫ ∞

−∞
e−Ax2

dx

)

=
(∫ ∞

−∞
e−Ax2

dx

)(∫ ∞

−∞
e−Ay2

dy

)
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=
∫ ∞

−∞

∫ ∞

−∞
e−A(x2+y2) dxdy

(polar coordinates) =
∫ 2π

θ=0

∫ ∞

r=0
e−Ar2

r dr dθ

=
∫ 2π

θ=0

(
lim
b→∞

1− e−Ab2

2A

)
dθ

=
∫ 2π

θ=0

1
2A

dθ

=
π
A

.

Taking square roots proves the lemma. �
Now to compute the Fourier transform for this example. For each ω ,

F f (ω) =
∫ ∞

−∞
e−Ax2

e−iωx dx

=
∫ ∞

−∞
e−A(x2+iωx/A) dx

(complete the square) =
∫ ∞

−∞
e−A(x2+iωx/A+(iω/2A)2) eA(iω/2A)2

dx

= e−ω 2/4A
∫ ∞

−∞
e−A(x+iω/2A)2

dx

= e−ω 2/4A
∫ ∞

−∞
e−Au2

du with u = x+ iω/2A

=
√

π
A

e−ω 2/4A by the lemma.

This establishes the result we were after. �
Observe that if we take A = 1/2, then f (x) = e−x2/2 and F f (ω) =

√
2πe−ω 2/2, a

constant multiple of f itself.
Additional examples are considered in the exercises. Let us look at some basic prop-

erties of the Fourier transform.

5.2 Properties and applications

Additivity. Because the integral of a sum of functions is equal to the sum of the integrals
of the functions separately, it follows that

F ( f +g)(ω) = F f (ω)+Fg(ω), (5.3)
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for all integrable functions f and g and every real number ω .

Constant multiples. Because the integral of k · f is equal to k times the integral of f ,
we see that

F (k f )(ω) = k ·F f (ω), (5.4)

for all integrable functions f , all (complex) numbers k, and every real number ω .

The two properties (5.3) and (5.4) taken together prove the following proposition.

Proposition 5.3. The Fourier transform acts as a linear transformation on the space
of all absolutely integrable functions. That is, for two such functions f and g and any
constants α and β , we get that

F (α f +βg) = αF ( f )+βF (g). (5.5)

Shifting/translation. For an integrable function f and fixed real number α , let g(x) =
f (x−α). (So the graph of g is the graph of f shifted or translated to the right by α
units.) Then

Fg(ω) = e−iωαF f (ω). (5.6)

Proof. For each ω , we get

Fg(ω) =
∫ ∞

−∞
f (x−α)e−iωx dx

(let u = x−α) =
∫ ∞

−∞
f (u)e−iω(u+α) du

= e−iωα
∫ ∞

−∞
f (u)e−iωu du

= e−iωαF f (ω) as claimed. �

Since the graph of g is a simple translation of the graph of f , the magnitude of
the component of g at any given frequency is the same as that of f . However, the
components occur at different places in the two signals, so there is a phase shift or
delay in the Fourier transform. Also, the fixed translation α encompasses more cycles
of a wave at a higher frequency than at a lower one. Therefore, the larger the value of α
is relative to the wavelength 2π/ω the larger will be the phase delay in the transform.
That is, the phase delay in the transform is proportional to ω , which explains the factor
of e−iωα in the transform of the shifted function g.

Shifting/modulation. For a given function f and a fixed real number ω0, let h(x) =
eiω0 x f (x). (So h “modulates” f by multiplying f by a periodic function of a fixed
frequency ω0/2π .) Then

Fh(ω) = F f (ω −ω0). (5.7)
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Proof. For each ω , we get

Fh(ω) =
∫ ∞

−∞
eiω0 x f (x)e−iωx dx

=
∫ ∞

−∞
f (x)e−i(ω−ω0)x dx

= F f (ω −ω0) (by definition!). �

These two shifting properties show that a translation of f results in a modulation of
F f while a modulation of f produces a translation of F f .

Scaling. For a given function f and a fixed real number a �= 0, let φ(x) = f (ax). Then

Fφ(ω) =
1
|a|F f (ω/a). (5.8)

Proof. Assume that a > 0 for now. For each ω , we get

Fφ(ω) =
∫ ∞

−∞
f (ax)e−iωx dx

(let u = ax) =
1
a

∫ ∞

−∞
f (u)e−iωu/a du

=
1
a

∫ ∞

−∞
f (u)e−i(ω/a)u du

=
1
a
F f (ω/a) (by definition!).

A similar argument applies when a < 0. (Why do we get a factor of 1/|a| in this
case?) �

Even and odd functions. A function f , defined on the real line, is even if f (−x) = f (x)
for every x. Similarly, a function g is odd if g(−x) = −g(x) for every x. For example,
the cosine function is even while the sine function is odd.

Using Euler’s formula (4.4), eiθ = cos(θ)+ isin(θ), we may write the Fourier trans-
form of a suitable real-valued function f as

F f (ω) =
∫ ∞

−∞
f (x)cos(ωx)dx− i ·

∫ ∞

−∞
f (x)sin(ωx)dx.

Now, if f is even, then, for fixed ω , the function x 	→ f (x)sin(ωx) is odd, whence∫ ∞
−∞ f (x)sin(ωx)dx = 0. Thus, an even function has a real-valued Fourier transform.

Similarly, if f is odd, then x 	→ f (x)cos(ωx) is also odd for each fixed ω . Thus,∫ ∞
−∞ f (x)cos(ωx)dx = 0. It follows that an odd function has a purely imaginary Fourier

transform.
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Transform of the complex conjugate. For a complex-number-valued function f de-
fined on the real line R, the complex conjugate of f is the function f defined by

f (x) = f (x) for every real number x. (5.9)

To uncover the relationship between the Fourier transform of f and that of f , let ω
be an arbitrary real number. Then we have

F f (ω) =
∫ ∞

−∞
f (x)e−iωx dx

=
∫ ∞

−∞
f (x)ei(−ω)x dx

=
∫ ∞

−∞
f (x) e−i(−ω)x dx

=
∫ ∞

−∞
f (x)e−i(−ω)x dx

= F f (−ω)
= F f (−ω).

This proves the following proposition.

Proposition 5.4. For an integrable function f defined on the real line, and for every
real number ω ,

F f (ω) = F f (−ω). (5.10)

Example 5.5. Let f (x) =
{

1 if −1 ≤ x ≤ 1,
0 if |x| > 1.

Then the Fourier transform of f is F f (ω) = 2sin(ω)/ω . Now let φ(x) = f (ax),

where a > 0. That is, φ(x) =
{

1 if −1/a ≤ x ≤ 1/a,
0 if |x| > 1/a.

So we already know from earlier work that Fφ(ω) = 2sin(ω/a)/ω , which is the
same as (1/a)F f (ω/a). This agrees with the scaling result (5.8).

Example 5.6. Let f (x) =
{

1 if −1 ≤ x ≤ 1,
0 if |x| > 1

as in the previous example. So, again,

the Fourier transform of f is F f (ω) = 2sin(ω)/ω . Now let

g(x) = f (x−2) =
{

1 if 1 ≤ x ≤ 3,
0 if x < 1 or x > 3.

By the shifting/translation result (5.6), we get

Fg(ω) = e−2iωF f (ω) = 2e−2iω sin(ω)
ω

.
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Example 5.7. As an application of the shifting/modulation property (5.7), observe that

cos(ω0x) = (1/2)(eiω0 x + e−iω0 x).

Thus, for any suitable f , take h(x) = f (x)cos(ω0x). That is,

h(x) = (1/2)eiω0 x f (x)+(1/2)ei(−ω0)x f (x).

It follows that

Fh(ω) = (1/2)F f (ω −ω0)+(1/2)F f (ω +ω0).

For a specific example, let f (x) =
{

1 if −1 ≤ x ≤ 1,
0 if |x| > 1

as in the previous exam-

ples. So, again, the Fourier transform of f is F f (ω) = 2sin(ω)/ω . With h(x) =
f (x)cos(ω0x), we get

Fh(ω) = (1/2)F f (ω −ω0)+(1/2)F f (ω +ω0)

= (1/2)
{

2
sin(ω −ω0)
(ω −ω0)

+2
sin(ω +ω0)
(ω +ω0)

}

=
sin(ω −ω0)
(ω −ω0)

+
sin(ω +ω0)
(ω +ω0)

The graph of F f in this example has a main peak of height 2 centered at ω = 0
with smaller ripples at the edges. The graph of Fh has two main peaks, each of height
1, centered at ω = ±ω0 with smaller ripples at the edges.

5.3 Heaviside and Dirac δ

Definition 5.8. The Heaviside function H is defined by

H(x) =
{

0 if x < 0,
1 if x > 0.

(5.11)

Technically, H(0) is not defined, which, nonetheless, does not stop us from writing
formulas like

H(x−a)−H(x−b) =
{

1 if a < x < b,
0 otherwise.

Formally, the value of the Heaviside function jumps by 1 at 0; so we think of the
differential dH as having the value 1 at 0 and the value 0 everywhere else. Formally,
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this suggests that
∫ ∞

−∞
f (x)dH = f (0) for any function f . (The intuitive idea is that dH

is 0 except at 0 where dH = 1, so the value of the integral is just f (0) ·1 = f (0); this is
an example of a general theory known as Riemann–Stieltjes integration.)

Definition 5.9. The Dirac δ function, denoted simply by δ , is defined to be the formal
derivative δ = dH/dx of the Heaviside function with respect to x.

Of course, since H is constant except at 0, we get that δ (x) = 0 except at x = 0
where H does not have a derivative (or the derivative is essentially ∞). So apparently
δ (0) does not make sense. Alternatively, we can think of δ (0) as being equal to ∞. So
the “graph” of δ basically consists of an infinitely tall spike at 0. (Warning: We should
not expect a computer to graph this for us!) The Dirac δ function is also known as the
impulse function, perhaps because its graph evokes the image of a sudden impulse of
energy that immediately dies out again.

In the context of integration, δ has a property of central importance. Since δ =
dH/dx, then it follows that dH = δ (x)dx. Hence, for any f , we get

∫ ∞

−∞
f (x)δ (x)dx =

∫ ∞

−∞
f (x)dH = f (0). (5.12)

In particular, substituting f (x) = 1 into (5.12) yields the formula
∫ ∞

−∞
δ (x)dx = 1. (5.13)

Thus, the graph of δ is an infinitely tall spike with no width but which has underneath
it an area of 1!

We use (5.12) to compute the Fourier transform of the δ function. Namely,

Fδ (ω) =
∫ ∞

−∞
δ (x)e−iωx dx = e−iω·0 = e0 = 1. (5.14)

So the Fourier transform of δ is the constant function equal to 1.
Neither H nor δ can exist in reality as a physical signal. The δ impulse would have

to appear out of nowhere (like a Big Bang?) and then die instantly. The Heaviside
signal would also have to appear out of nowhere and then propagate without loss of
energy for eternity. Moreover, neither of these functions is even properly defined as a
function. Instead, they fall into a class known as generalized functions or distributions.
Nonetheless, they are useful idealized mathematical and physical constructs and we
shall use them without further troubling ourselves over their precise natures.

There are other approaches to the definition of δ , for instance as the integral in
(5.19), or as the limit

δ (x) = lim
a→0+

(
1
2a

)
a (x), (5.15)
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where a(x) =
{

1 if −a ≤ x ≤ a,
0 if |x| > a.

We will not concern ourselves here with these

alternatives. (The function a is also called the characteristic function of the interval
[−a,a] and is often denoted by χ[−a,a]. We will use the symbol  to remind us of the
shape of its graph.)

5.4 Inversion of the Fourier transform

In the definition of the Fourier transform (5.1), there may seem to be no reason a pri-
ori to have used the exponent −iωx rather than its opposite +iωx. This prompts the
following definition.

Definition 5.10. For a function g for which
∫ ∞
−∞ |g(ω)|dx < ∞, the inverse Fourier

transform of g is defined, for each real number x, by

F−1g(x) :=
1

2π

∫ ∞

ω=−∞
g(ω)eiωx dω. (5.16)

The reasons for the factor 1/2π as well as for the name of this transform are made clear
by the following essential theorem.

Theorem 5.11. Fourier inversion theorem. If f is continuous on the real line and∫ ∞
−∞ | f (x)|dx < ∞, then

F−1(F f )(x) = f (x) for all x. (5.17)

To prove this, we first need a lemma.

Lemma 5.12. For real numbers t and x,

∫ ∞

ω=−∞
eiω(t−x) dω = lim

ε→0

√
π
ε
· e−(x−t)2/(4ε). (5.18)

Proof of Lemma 5.12. For each real number ω we have limε→0 e−εω 2
= 1. Thus, for any

real numbers t and x,

∫ ∞

ω=−∞
eiω(t−x) dω = lim

ε→0

∫ ∞

ω=−∞
e−εω 2 · eiω(t−x) dω

= lim
ε→0

∫ ∞

ω=−∞
e−εω 2 · e−iω(x−t) dω
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Previously, we computed the Fourier transform of a Gaussian function e−Ax2
to be√

π/Ae−t2/(4A). Applying this formula to the Gaussian function e−εω 2
(so A = ε and

ω is in place of x) and evaluating the resulting Fourier transform at (x− t) yields

∫ ∞

ω=−∞
e−εω 2 · e−iω(x−t) dω =

√
π
ε

e−(x−t)2/(4ε).

Substituting this into the previous calculation, we get
∫ ∞

ω=−∞
eiω(t−x) dω = lim

ε→0

∫ ∞

ω=−∞
e−εω 2 · e−iω(x−t) dω

= lim
ε→0

√
π
ε

e−(x−t)2/(4ε),

which establishes the lemma. �
Proof of Theorem 5.11. For a continuous function f that is absolutely integrable on the
real line, let F denote the Fourier transform F f . For any real number t, we get

F−1F(t) =
1

2π

∫ ∞

ω=−∞
F(ω)eiω t dω

=
1

2π

∫ ∞

ω=−∞

∫ ∞

x=−∞
f (x)e−iωx eiω t dxdω (by definition of F)

=
1

2π

∫ ∞

x=−∞

∫ ∞

ω=−∞
f (x)eiω(t−x) dω dx

=
1

2π

∫ ∞

x=−∞
f (x)

(∫ ∞

ω=−∞
eiω(t−x) dω

)
dx

=
1

2π
· lim

ε→0

∫ ∞

x=−∞
f (x)

√
π
ε

e−(x−t)2/(4ε) dx (by the lemma).

Set y = (x− t)/(2
√

ε), so x = t +2
√

εy and dx = 2
√

ε dy:

F−1F(t) =
1

2π
· lim

ε→0

(√
π
ε
·2√ε

)∫ ∞

y=−∞
f (t +2

√
εy)e−y2

dy

=
1√
π
· f (t) ·

∫ ∞

y=−∞
e−y2

dy (since lim
ε→0

f (t +2
√

εy) = f (t)∀y)

=
1√
π
· f (t) ·√π

= f (t).

This is the desired result. �
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A bit more generally, if f has a point of discontinuity at α and if the one-sided limits
limx→α− f (x) and limx→α+ f (x) both exist, then

F−1(F f )(α) = (1/2)
(

lim
x→α−

f (x)+ lim
x→α+

f (x)
)

.

The proof of this claim is left as an exercise.

Example 5.13. Right away let’s apply the inverse Fourier transform to a function that
is not even a function! We saw before that the Fourier transform of the δ function is the
constant function to 1. That means that the δ function is the inverse Fourier transform
of the constant function 1. That is,

δ (x) = F−11(x) =
1

2π

∫ ∞

−∞
eiωx dω (5.19)

for all x. Interestingly, had we elected to define the δ function by this integral, then
we could have used that to provide a simpler proof of the Fourier inversion theorem,
Theorem 5.11. (See (2.12) in [9].)

Example 5.14. Inverse Fourier transform of a Gaussian. We have already seen that
the Fourier transform of a Gaussian is another Gaussian. Thus, the same will be true for
the inverse Fourier transform of a Gaussian. Specifically,

F−1(e−Bω 2
)(x) =

1
2π

∫ ∞

−∞
e−Bω 2

eiωx dω

=

√
1

4πB
e−x2/(4B). (5.20)

In particular, if we take B = 1/(4A) and multiply both sides by
√

π/A we see that we
get e−Ax2

, illustrating again the inverse relationship between the transforms (5.1) and
(5.16).

Example 5.15. Inverse Fourier transform of a square wave. As in (5.15), let

a (x) =
{

1 if −a ≤ x ≤ a,
0 if |x| > a.

(5.21)

Then the inverse Fourier transform of a is given by
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F−1 a (x) =
1

2π

∫ ∞

ω=−∞
a(ω)eiωx dω

=
1

2π

∫ a

ω=−a
eiωx dω

=
1

2π
eiax − e−iax

ix

=
1
π

sin(ax)
x

, (5.22)

where Euler’s formula (4.4) was used in the final step.

5.5 Multivariable forms

We will need two generalizations of the Fourier transform in order to apply it within
the context of medical imaging, where the functions involved are defined in the plane
using either Cartesian or polar coordinates.

First, for a function h(r,θ) defined using polar coordinates in the plane, we simply
apply the one-variable Fourier transform in the radial variable (r) only. This gives the
following definitions.

Definition 5.16. For h(r,θ), we define the Fourier transform of h at a point (t,θ) (also
in polar coordinates and with the same angle θ ) by

Fh(t,θ) =
∫ ∞

r=−∞
h(r,θ)e−irt dr. (5.23)

Definition 5.17. Similarly, the inverse Fourier transform of h is given by

F−1h(t,θ) =
1

2π

∫ ∞

r=−∞
h(r,θ)eirt dr. (5.24)

The inverse relationship between these transforms is clear because the variable θ
is treated as a constant in the computations. Significantly, this generalization of the
Fourier transform and its inverse applies to the Radon transform of a function f since
R f is defined at the points (t,θ) corresponding to the lines �t,θ .

The second generalization of the Fourier transform is applied to functions g defined
using Cartesian coordinates in the plane. For instance, g(x,y) might represent the X-ray
attenuation coefficient of a tissue sample located at the point (x,y).

Definition 5.18. For such a function g, we define the Fourier transform of g evaluated
at the point (X ,Y ) (also in Cartesian coordinates in the plane) by
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Fg(X ,Y ) =
∫ ∞

−∞

∫ ∞

−∞
g(x,y)e−i(xX+yY ) dxdy. (5.25)

Definition 5.19. Similarly, the inverse Fourier transform of g at (x,y) is given by

F−1g(x,y) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
g(X ,Y )ei(xX+yY ) dxdy. (5.26)

As in the one-variable setting, we have the inverse relationship

F−1(Fg)(x,y) = F (F−1g)(x,y) = g(x,y).

Of course, some assumptions and restrictions on g are necessary for these integrals to
make sense, but we will gloss over these concerns here. (See Appendix A for details.)

A geometric viewpoint. Consider a vector 〈X ,Y 〉 = 〈r cos(θ), r sin(θ)〉 in R2. For ar-
bitrary real numbers x and y, let

t = xcos(θ)+ ysin(θ),
s = −xsin(θ)+ ycos(θ), and

〈x1,y1〉 = 〈−ssin(θ), scos(θ)〉.

Then
〈x,y〉 = 〈t cos(θ), t sin(θ)〉+ 〈x1,y1〉,

and, because 〈x1,y1〉············ 〈cos(θ), sin(θ)〉 = 0, it follows that

xX + yY = rt cos2(θ)+ rt sin2(θ)+ r(x1 cos(θ)+ y1 sin(θ)) = rt.

Thus, the expression e−i(xX+yY ) in the definition of the 2-dimensional Fourier trans-
form is the same as the expression e−irt that appears in the one-variable Fourier trans-
form. This function is periodic with period 2π/r but, in this setting, adding a multiple
of 2π/r to the value of t amounts to moving the point (x,y) by a distance of 2π/r
in the direction of the vector 〈cos(θ), sin(θ)〉. In other words, the function e−i(xX+yY )

oscillates with period 2π/
√

X2 +Y 2 (= 2π/r) in the direction of the vector 〈X ,Y 〉.
In higher dimensions, suppose the function g is defined in n-dimensional space and

represent points in n-dimensional space as vectors, such as u or v. The n-dimensional
Fourier transform is defined by

Fg(u) =
∫

Rn
g(v)e−i(u············v) dv. (5.27)

We will not have occasion to use the generalized Fourier transform for n > 2.
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5.6 Exercises

5.1. Use the “shifting rules,” (5.6) and (5.7), to examine the following examples. (In
each case, the Fourier transform of the given function has been computed previously.)

(a) Let f (x) = e−|x|. Then the Fourier transform of f is

F f (ω) =
2

1+ω 2 .

(i) Compute the Fourier transform of g(x) = f (x−α), where α is a constant;
(ii) Compute the Fourier transform of h(x) = eiω0 x f (x), where ω0 is a constant;
(iii) Plot the Fourier transform of f , the Fourier transform of g with α = 1, and the

Fourier transform of h with ω0 = π/2.

(b) For 1/2(x) =
{

1 if − 1
2 ≤ x ≤ 1

2 ,
0 if |x| > 1

2 ,
the Fourier transform is

F 1/2 (ω) =
sin(ω/2)
(ω/2)

.

(i) Compute the Fourier transform of g(x) = 1/2(x−α), where α is a constant;
(ii) Compute the Fourier transform of h(x) = eiω0 x 1/2 (x), where ω0 is a constant;
(iii) Plot the Fourier transform of 1/2, the Fourier transform of g with α = 1, and

the Fourier transform of h with ω0 = π/2.

(c) For f (x) := e−x2/2, the Fourier transform of f is

F f (ω) =
√

2π e−ω 2/2.

(i) Compute the Fourier transform of g(x) = f (x−α), where α is a constant;
(ii) Compute the Fourier transform of h(x) = eiω0 x f (x), where ω0 is a constant;
(iii) Plot the Fourier transform of f , the Fourier transform of g with α = 1, and the

Fourier transform of h with ω0 = π/2.

5.2. Recall Euler’s Formula: eit = cos(t)+ isin(t) for every real number t.

(a) Prove that cos(ax) = (eiax + e−iax)/2 for all real numbers a and x.
(b) Prove that the function G(x) = eiax has period 2π/a.
(c) Explain, based on parts (a) and (b), why the Fourier transform of f (x) = cos(ax)

consists of two impulses, located at the frequencies ω1 =
a

2π
and ω2 = − a

2π
.

5.3. With the assumption that limx→±∞ f (x)e−iωx = 0 for all ω , show that

F ( f ′)(ω) = iωF f (ω) for all ω .
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5.4. Again using the fact that F(ω) =
2

1+ω 2 is the Fourier transform of f (x) = e−|x|,

compute the inverse Fourier transform of

H(ω) =
1

1+B2(ω −ω0)2 ,

where B and ω0 are (real) constants. (Such a function H is called a Lorentzian.)

5.5. A common type of signal is a decaying wave. Compute the Fourier transforms of
these two decaying waves:

(a) (two-way decaying wave) f (x) = e−λ |x| cos(ω0x);

(b) (one-way decaying wave) g(x) =
{

e−λx cos(ω0x) if x ≥ 0,
0 if x < 0.

5.6. Show that the inverse Fourier transform of an even function is a real-valued func-
tion while the inverse Fourier transform of an odd function is purely imaginary (has
real part equal to 0).

5.7. Let f be absolutely integrable on the real line and piecewise continuous with a point
of discontinuity at α . In particular, the one-sided limits limx→α− f (x) and limx→α+ f (x)
both exist. Prove that

F−1(F f )(α) = (1/2)
(

lim
x→α−

f (x)+ lim
x→α+

f (x)
)

.
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Two Big Theorems

The ideas discussed in this chapter involve interactions between three transforms—
the Radon transform, the Fourier transform, and the back-projection transform. Each
of these transforms is defined in terms of improper integrals on infinite intervals. This
raises the somewhat technical matter of determining which functions may appropriately
be considered, an issue that is addressed in Appendix A. For the time being, we assume
that any function being considered here meets the requirements. For those functions that
arise in the practical world of medical imaging this is certainly the case.

6.1 The central slice theorem

The interaction between the Fourier transform and the Radon transform is expressed
in an equation known as the central slice theorem (also called the central projection
theorem).

In this presentation, the symbols F and F2 are used to denote the 1- and 2-
dimensional Fourier transforms, respectively. The Radon transform is denoted by R.
The function f , representing, say, an X-ray attenuation coefficient, is a function of 2-
dimensional Cartesian coordinates.

Theorem 6.1. Central slice theorem. For any suitable function f defined in the plane
and all real numbers S and θ ,

F2 f (Scos(θ),S sin(θ)) = F (R f )(S,θ). (6.1)

Proof. Given f defined in the plane and real numbers S and θ , the definition of the
2-dimensional Fourier transform gives
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F2 f (Scos(θ),S sin(θ)) =
∫ ∞

−∞

∫ ∞

−∞
f (x,y)e−iS(xcos(θ)+ysin(θ)) dxdy (6.2)

Now, instead of integrating separately over −∞ < x < ∞ and −∞ < y < ∞, we can reor-
ganize the points in the xy-plane according to the value of xcos(θ)+ ysin(θ). Specif-
ically, for each real number t, gather together all of the points (x,y) in the plane for
which xcos(θ)+ ysin(θ) = t. This is exactly the line �t,θ ! From our earlier analysis,
we know that, for each point (x,y) on �t,θ , the real number s = −xsin(θ) + ycos(θ)
satisfies x = t cos(θ) − ssin(θ) and y = t sin(θ) + scos(θ). Moreover, the matrix[

∂x/∂ t ∂x/∂ s
∂y/∂ t ∂y/∂ s

]
has determinant 1, so that dsdt = dxdy when the change of variables

is put in place. With these changes, the right-hand side of (6.2) becomes
∫ ∞

−∞

∫ ∞

−∞
f (t cos(θ)− ssin(θ), t sin(θ)+ scos(θ))e−iSt dsdt. (6.3)

The factor e−iSt in the integrand of (6.3) does not depend on s, so it may be factored out
of the inner integral. Thus, (6.3) becomes

=
∫ ∞

−∞

(∫ ∞

−∞
f (t cos(θ)− ssin(θ), t sin(θ)+ scos(θ))ds

)
e−iSt dt. (6.4)

The inner integral in (6.4) is exactly the definition of R f (t,θ), the Radon transform of
the function f evaluated at the point (t,θ). That is, (6.4) is the same as

∫ ∞

−∞
(R f (t,θ))e−iSt dt. (6.5)

Finally, the integral (6.5) is the definition of the Fourier transform of R f evaluated at
(S,θ). That is, (6.5) is equal to

F (R f )(S,θ). (6.6)

We have established, as we set out to do, the equality

F2 f (Scos(θ),S sin(θ)) = F (R f )(S,θ). (6.7)

�

6.2 Filtered back projection

The back projection served as a first attempt at inverting the Radon transform and recov-
ering the X-ray attenuation-coefficient function. The result was not the original function
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but a smoothed-out version of it. The next theorem, called the filtered back-projection
formula, shows how to correct for the smoothing effect and recover the original func-
tion.

Theorem 6.2. The filtered back-projection formula. For a suitable function f defined
in the plane and real numbers x and y,

f (x,y) =
1
2
B

{
F−1 [|S|F (R f )(S,θ)]

}
(x,y). (6.8)

Proof. The (2-dimensional) Fourier transform and its inverse transform are just that—
inverses. Hence, for any suitable function f and any point (x,y) in the plane, we get

f (x,y) = F−1
2 F2 f (x,y). (6.9)

Applying the definition of the inverse 2-dimensional Fourier transform, the right-hand
side of (6.9) becomes

1
4π2

∫ ∞

−∞

∫ ∞

−∞
F2 f (X ,Y )e+i(xX+yY ) dX dY . (6.10)

Now change variables from Cartesian coordinates (X ,Y ) to polar coordinates (S,θ),
where X = Scos(θ) and Y = S sin(θ). Rather than use the usual intervals 0 ≤ S < ∞
and 0 ≤ θ ≤ 2π , however, allow S to be any real number and restrict θ to 0 ≤ θ ≤ π .
With this variation, we get dX dY = |S|dSdθ (rather than SdSdθ ). With these changes,
(6.10) becomes

1
4π2

∫ π

0

∫ ∞

−∞
F2 f (Scos(θ),S sin(θ))e+iS(xcos(θ)+ysin(θ)) |S|dSdθ . (6.11)

The factor F2 f (Scos(θ),S sin(θ)) in the integrand of (6.11) is, according to the central
slice theorem (Theorem 6.1), the same as F (R f )(S,θ). Thus, (6.11) is the same as

1
4π2

∫ π

0

∫ ∞

−∞
F (R f )(S,θ)e+iS(xcos(θ)+ysin(θ)) |S|dSdθ . (6.12)

The inner integral (with respect to S) in (6.12) is, by definition, 2π times the inverse
Fourier transform of the function |S|F (R f )(S,θ) evaluated at the point (xcos(θ)+
ysin(θ),θ). That is, (6.12) is the same as

1
2π

∫ π

0
F−1 [|S|F (R f )(S,θ)](xcos(θ)+ ysin(θ),θ)dθ . (6.13)

Finally, the integral in (6.13) is the one used in the back projection of the (admittedly
somewhat elaborate) function F−1 [|S|F (R f )(S,θ)]. Hence, (6.13) is equal to
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1
2
B

{
F−1 [|S|F (R f )(S,θ)]

}
(x,y). (6.14)

We have successfully established the desired formula

f (x,y) =
1
2
B

{
F−1 [|S|F (R f )(S,θ)]

}
(x,y). (6.15)

�

Without the factor of |S| in the formula, the Fourier transform and its inverse would
cancel out and the result would be simply the back projection of the Radon transform
of f , which we know does not lead to recovery of f . Thus, the essential element in the
formula is to multiply the Fourier transform of R f (S,θ) by the absolute-value function
|S| before the inverse Fourier transform is applied. In the language of signal processing,
we say that the Fourier transform of R f is filtered by multiplication by |S|. That is
why the formula is called the filtered back-projection formula. We will discuss filters
in greater detail in the next chapter.

The filtered back-projection formula is the fundamental basis for image reconstruc-
tion. However, it assumes that the values of R f (S,θ) are known for all possible lines
�S,θ . In practice, of course, this is not the case. Only a finite number of X-ray samples
are taken and we must approximate an image from the resulting data. Thus, we will
turn our attention to the practical implementation of the filtered back-projection for-
mula. But first, let us look at a different formula for recovering f that was presented by
Radon in 1917.

6.3 The Hilbert transform

A property of the Fourier transform that was not considered above concerns the inter-
action of the Fourier transform with the derivative of a function. To wit,

F

(
d f
dx

)
(ω) = iωF ( f )(ω). (6.16)

Applied to the Radon transform, (6.16) yields

F

(
∂ (R f )(t,θ)

∂ t

)
(S,θ) = iSF (R f )(S,θ). (6.17)

Now, |S| = S · sgn(S), where
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sgn(S) =

⎧⎨
⎩

1 if S > 0,
0 if S = 0,
−1 if S < 0.

Thus, from (6.17),

i · sgn(S) ·F
(

∂ (R f )(t,θ)
∂ t

)
(S,θ) = −|S|F (R f )(S,θ). (6.18)

It now follows from Theorem 6.2, the filtered back-projection formula, that

f (x,y) =
−1
2

B

{
F−1

[
i · sgn(S) ·F

(
∂ (R f )(t,θ)

∂ t

)
(S,θ)

]}
(x,y). (6.19)

That is quite a pile of symbols, so, historically, it has been simplified by defining a new
transform, called the Hilbert transform, named for David Hilbert (1862–1943).

Definition 6.3. For a suitable function g defined on the real line, the Hilbert transform
of g, denoted by H g, is the function whose Fourier transform is equal to i · sgn ·Fg.
That is, for each real number t , we define

H g(t) = F−1 [i · sgn(ω) ·Fg(ω)](t). (6.20)

With this definition, (6.19) simplifies to the formula

f (x,y) =
−1
2

B

[
H

(
∂ (R f )(t,θ)

∂ t

)
(S,θ)

]
(x,y). (6.21)

This is Radon’s original inversion formula, though expressed here in contemporary
notation.

6.4 Exercises

6.1. Provide the logical explanation for each step in the proof of Theorem 6.1, the
central slice theorem. (Note: The symbols F and F2 are used to denote the 1-
and 2-dimensional Fourier transforms, respectively. The Radon transform is denoted
by R. In this problem, f is a function of 2-dimensional Cartesian coordinates, and
(Scos(θ),S sin(θ)) is a typical point in 2-dimensional Cartesian space.)

F2 f (Scos(θ),S sin(θ)) =
∫ ∞

−∞

∫ ∞

−∞
f (x,y)e−iS(xcos(θ)+ysin(θ)) dxdy (6.22)
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=
∫ ∞

−∞

∫ ∞

−∞
f (t cos(θ)− ssin(θ), t sin(θ)+ scos(θ))e−iSt dsdt (6.23)

=
∫ ∞

−∞

(∫ ∞

−∞
f (t cos(θ)− ssin(θ), t sin(θ)+ scos(θ))ds

)
e−iSt dt (6.24)

=
∫ ∞

−∞
(R f (t,θ))e−iSt dt (6.25)

= F (R f )(S,θ). (6.26)

6.2. Provide the logical explanation for each step in the derivation of Theorem 6.2, the
filtered back-projection formula. (Note: The symbols F and F2 are used to denote the
1- and 2-dimensional Fourier transforms, respectively. The Radon transform is denoted
by R and the back projection by B. In this problem, f is a function of 2-dimensional
Cartesian coordinates and (x,y) is a typical point in the Cartesian plane.)

f (x,y) = F−1
2 F2 f (x,y) (6.27)

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞
F2 f (X ,Y )e+i(xX+yY ) dX dY (6.28)

=
1

4π2

∫ π

0

∫ ∞

−∞
F2 f (Scos(θ),S sin(θ))e+iS(xcos(θ)+ysin(θ)) |S|dSdθ (6.29)

=
1

4π2

∫ π

0

∫ ∞

−∞
F (R f )(S,θ)e+iS(xcos(θ)+ysin(θ)) |S|dSdθ (6.30)

=
1

2π

∫ π

0
F−1 [|S|F (R f )(S,θ)](xcos(θ)+ ysin(θ),θ)dθ (6.31)

=
1
2
B

{
F−1 [|S|F (R f )(S,θ)]

}
(x,y). (6.32)
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Filters and Convolution

7.1 Introduction

Of constant concern in the analysis of signals is the presence of noise, a term which
here means more or less any effect that corrupts a signal. This corruption may arise
from background radiation, stray signals that interfere with the main signal, errors in
the measurement of the actual signal, or what have you. In order to remove the effects
of noise and form a clearer picture of the actual signal, a filter is applied.

For a first example of a filter, consider that the noise present in a signal is often
random. That means that the average amount of noise over time should be 0. Consider
also that noise often has a high frequency, so the graph of the noise signal is fuzzy and
jaggedy. That means that the amount of noise should average out to 0 over a fairly short
time interval. So, let T > 0 be a positive real number and let f represent a noisy signal.
For each fixed value of x, the average value of f over the interval x−T ≤ t ≤ x + T is
given by

fave(x) =
1

2T

∫ x+T

t=x−T
f (t)dt. (7.1)

The function fave that has just been defined represents a filtered version of the original
signal f . For an appropriate value of T , the noise should average out to 0 over the
interval, so fave would be close to the noise-free signal that we are trying to recover.
If the value of T is too large, then some interesting features of the true signal may get
smoothed out too much. If the choice of T is too small, then the time interval may be
too short for the randomized noise to average out to 0.

A deeper analysis of (7.1) suggests that we consider the function φ = T /(2T ),
where

T (t) =
{

1 if −T ≤ t ≤ T ,
0 if |t| > T .

(7.2)
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Notice that ∫ ∞

−∞
φ(t)dt =

1
2T

·
∫ T

−T
T (t)dt = 1.

Also, for each fixed value of x, we get

φ(x− t) =

⎧⎨
⎩

1
2T

if x−T ≤ t ≤ x+T ,

0 otherwise.
(7.3)

Hence, for any given function f and any fixed value of x, we get

f (t)φ(x− t) =

⎧⎨
⎩

1
2T

f (t) if x−T ≤ t ≤ x+T ,

0 otherwise,
(7.4)

from which it follows that the integral in (7.1) is the same as the integral

fave(x) =
∫ ∞

t=−∞
f (t)φ(x− t)dt. (7.5)

Computationally, the function fave represents a moving average of the value of f
over intervals of width 2T . This technique is used for the analysis of all sorts of
signals—radio, electrical, microwave, audio—and also for things we might not think
of as being signals, like long-term behavior of stock market prices.

Graphically, the graph of φ(x− t) as a function of t is obtained by flipping the graph
of φ over from right to left and then sliding this flipped graph along the t-axis until
it is centered at x instead of at 0. This reflected-and-translated version of φ is then
superimposed on the graph of f , and the area under the graph of the resulting product
is computed. To generate the graph of fave, we reflect the graph of φ and then slide
the reflected graph across the graph of f , stopping at each x value to compute the area
underneath the product where the graphs overlap.

Example 7.1. Consider a simple “square wave:”

f (t) = a(t) =
{

1 if |t| ≤ a,
0 if |t| > a.

Take φ = T /(2T ) as above. Then the product f (t) · φ(x− t) is equal to 0 whenever
|x| > T +a, since then it is impossible to have both |t| ≤ a and |x− t| ≤ T . For x such
that −T − a ≤ x ≤ 0, we get f (t) · φ(x− t) = 1/(2T ) provided that −a ≤ t ≤ x + T .
Similarly, for x such that 0 ≤ x ≤ T + a, we get f (t) ·φ(x− t) = 1/(2T ) provided that
x−T ≤ t ≤ a. It follows now that, for x such that −T −a ≤ x ≤ 0, we get
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∫ ∞

t=−∞
f (t) ·φ(x− t)dt =

∫ x+T

t=−a

(
1

2T

)
dt =

1
2T

· (T +a+ x) .

Similarly, for x such that 0 ≤ x ≤ T +a, we get

∫ ∞

t=−∞
f (t) ·φ(x− t)dt =

∫ a

t=x−T

(
1

2T

)
dt =

1
2T

· (T +a− x) .

Thus, the filtered function fave, as in (7.5), is given by

fave(x) =

⎧⎨
⎩

1
2T

· (T +a−|x|) if |x| ≤ T +a,

0 if |x| > T +a.
(7.6)

This shows that, where the graph of f is a “box” (square wave) on the interval
[−a,a], the graph of fave is a “tent” on the interval [−T −a,T +a]. So the “tent” repre-
sents a smoothed-out “box”—instead of the signal starting and ending abruptly as with
the box, the smoothed-out signal, the tent, gradually fades in and then gradually fades
out. Perhaps we can visualize filling a rectangular box with dry sand. When the box is
turned upside down and lifted away, the pile of sand will lose its box shape and collapse
into a cone shape. The box becomes a tent.

7.2 Convolution

When some other function g is used in place of T /(2T ) in the integral in (7.5), then
the resulting function is not a simple moving average of the value of f over successive
intervals. But we do get a modified version of f that has been “filtered” in a way that is
determined by the function g. We make the following formal definition.

Definition 7.2. Given two functions f and g (defined and integrable on the real line),
the convolution of f and g is denoted by f ∗g and defined by

( f ∗g)(x) :=
∫ ∞

t=−∞
f (t)g(x− t)dt for x ∈ R. (7.7)

For instance, the function fave in (7.5) is the same as the convolution f ∗ φ , where
φ = T /(2T ). Graphically, the graph of f ∗ g can be obtained by reflecting the graph
of g across the y-axis, then sliding the reflected graph across the graph of f , stopping
at each x to compute the integral of the product where the two graphs overlap.

Example 7.3. The computation in (7.6) gives the convolution a ∗ (T /(2T )).
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Example 7.4. For the “tent” function
∧

(t) =
{

1−|t| if −1 ≤ t ≤ 1,
0 if |t| > 1,

the convolution
∧∗∧

is piecewise cubic on the interval −2 ≤ x ≤ 2 and vanishes outside that interval.

In general, it is not so easy to compute the convolution of two functions “by hand.”
The most manageable situation occurs if one of the functions is a “box” function k ·
T . Another helpful observation is that, if f vanishes outside the interval [a,b] and
g vanishes outside the interval [c,d], then the convolution f ∗ g vanishes outside the
interval [a+ c,b+d]. The proof of this is left as an exercise.

7.2.1 Some properties of convolution

Commutativity. For suitable functions f and g, we get

f ∗g = g∗ f .

Proof. For each real number x, by definition

( f ∗g)(x) =
∫ ∞

t=−∞
f (t)g(x− t)dt.

Make a change of variables with u = x − t . Then du = −dt and t = (x − u). Also,
when t = −∞, then u = ∞ and, when t = ∞, then u = −∞. (Remember that x is fixed
throughout this process). Thus, the previous integral becomes

∫ −∞

u=∞
f (x−u)g(u)(−du)

which is the same as the integral
∫ ∞

u=−∞
g(u) f (x−u)du.

This last integral is exactly the definition of (g∗ f )(x). Thus, f ∗g = g∗ f as claimed.
�

Linearity. For suitable functions f , g1, and g2, and for scalars α and β , we get

f ∗ (αg1 +βg2) = α( f ∗g1)+β ( f ∗g2).

This property follows immediately from the fact that integration is linear. Combining
this with the commutativity result, we also get that

(αg1 +βg2)∗ f = α(g1 ∗ f )+β (g2 ∗ f ).
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Shifting. Given a function f and a real number a, let fa denote the shifted (translated)
function

fa(x) = f (x−a).

Then, for suitable g, we get

(g∗ fa)(x) =
∫ ∞

t=−∞
g(t) fa(x− t)dt

=
∫ ∞

t=−∞
g(t) f (x− t −a)dt

=
∫ ∞

t=−∞
g(t) f ((x−a)− t)dt

= (g∗ f )(x−a)

= (g∗ f )a(x).

Similarly,

(ga ∗ f )(x) =
∫ ∞

t=−∞
ga(t) f (x− t)dt

=
∫ ∞

t=−∞
g(t −a) f (x− t)dt

=
∫ ∞

t=−∞
g(t −a) f ((x−a)− (t −a))dt

=
∫ ∞

s=−∞
g(s) f ((x−a)− s)ds where s = t −a

= (g∗ f )(x−a)

= (g∗ f )a(x).

Convolution with δ . The convolution of an arbitrary function with the Dirac delta
function yields an interesting result—it isolates the value of the function at a specific
point. Specifically, for each real number x, compute

( f ∗δ )(x) =
∫ ∞

t=−∞
f (t)δ (x− t)dt = f (x),

where we have used the facts that δ (x− t) = 0 unless t = x and that
∫ ∞
−∞ δ (s)ds = 1. In

other words, convolution with δ acts like the identity map:

( f ∗δ )(x) = f (x) for all x; f ∗δ = f . (7.8)
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7.3 Filter resolution

The convolution of a function f with the δ function reproduces f exactly; so this “filter”
has perfect resolution. More generally, let φ be a nonnegative function with a single
maximum value M attained at x = 0. Suppose also that φ is increasing for x < 0 and
decreasing for x > 0. (For example, φ could be a Gaussian or a “tent.”) Let the numbers
x1 and x2 satisfy x1 < 0 < x2 and φ(x1) = φ(x2) = M/2, half the maximum value of φ .
The distance (x2 − x1) is called the full width half maximum of the function φ , denoted
FWHM(φ). For the filter of “convolution with φ ,” the resolution of the filter is defined
to be equal to FWHM(φ).

The idea is that a function φ having a smaller FWHM is pointier or spikier than
a function with a larger FWHM and, hence, looks more like the δ function. So the
resolution is better if the filter function φ has a smaller FWHM.

Here is another way to see how the resolution of a filter is related to the FWHM
of the filter function. Suppose that a function f consists of two unit impulses, two
instantaneous “blips,” separated by a distance of d. It can be shown, for instance by
using the graphical approach of sliding the reflected graph of φ across the graph of f ,
that, if d > FWHM(φ), then the graph of ( f ∗ φ) has two peaks, like f . But if d ≤
FWHM(φ), then the graph of ( f ∗φ) has only one peak, so the detail in the graph of f
is lost, or blurred, by convolution with φ . In other words, the smallest distance between
distinct features of f that can still be seen in the filtered signal ( f ∗ φ) is FWHM(φ).
The choice of the filter function has a direct effect on the resolution of the filtered signal.

Example 7.5. FWHM of a Gaussian. For ω real, let F(ω) = e−Bω 2
, where B is a pos-

itive constant. The maximum value of F is F(0) = 1. Thus, half maximum is achieved
when e−Bω 2

= 1/2, or when ω = ±√
ln(2)/B. Therefore,

FWHM = 2
√

ln(2)/B

for this function.

7.4 Convolution and the Fourier transform

For suitable functions f and g, the product of their respective Fourier transforms, eval-
uated at ω , is

F f (ω) ·Fg(ω) =
∫ ∞

x=−∞
f (x)e−iωx dx ·

∫ ∞

y=−∞
g(y)e−iωy dy. (7.9)

Keep in mind that x and y are just “dummy” variables here. Now, introduce a new
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variable s such that, for each fixed value of x, we have y = s− x. Thus dy = ds, and
hence the right-hand side of (7.9) becomes

∫ ∞

x=−∞
f (x)e−iωx dx ·

∫ ∞

s=−∞
g(s− x)e−iω(s−x) ds. (7.10)

The first integral in (7.10) is independent of s, so we may move it inside the other
integral. Since e−iωx · e−iω(s−x) = e−iωs, this yields

∫ ∞

s=−∞

(∫ ∞

x=−∞
f (x)g(s− x)dx

)
e−iωs ds. (7.11)

Notice now that the inner integral in (7.11) is exactly ( f ∗g)(s), while the outer integral
is the Fourier transform of the inner integral, evaluated at ω . That is, (7.11) is the
same as ∫ ∞

s=−∞
( f ∗g)(s)e−iωs ds = F ( f ∗g)(ω). (7.12)

Thus, we have established the following property.

Theorem 7.6. For suitable functions f and g,

F f ·Fg = F ( f ∗g). (7.13)

So, we see that the Fourier transform of a convolution is just the product of the
individual transforms. This relationship will play a significant role in what is to come.
We might wonder as well what happens if we apply the Fourier transform to a product.
The result is almost as clean as in the previous theorem, except for a factor of 1/2π that
creeps in.

Theorem 7.7. For suitable functions f and g,

F ( f ·g) =
1

2π
(F f )∗ (Fg) . (7.14)

Proof. Given f and g, for simplicity denote F f and Fg by F and G, respectively. The
Fourier transform of the product f ·g, evaluated at an arbitrary real number ω , is

F ( f ·g)(ω)

=
∫ ∞

x=−∞
f (x)g(x)e−iωx dx

=
∫ ∞

x=−∞

(
1

2π

∫ ∞

ν=−∞
F(ν)e+iνx dν

)(
1

2π

∫ ∞

ζ=−∞
G(ζ )e+iζ x dζ

)
e−iωx dx

=
(

1
2π

)2 ∫ ∞

ν=−∞
F(ν)

(∫ ∞

ζ=−∞
G(ζ )

(∫ ∞

x=−∞
e+i(ν+ζ−ω)x dx

)
dζ

)
dν .
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Observe that the inner integral,
∫ ∞

x=−∞ e+i(ν+ζ−ω)x dx, represents (2π) times the inverse
Fourier transform of the constant function 1 evaluated at (ν +ζ −ω). But F−1(1) = δ ,
so ∫ ∞

x=−∞
e+i(ν+ζ−ω)x dx = (2π) ·δ (ν +ζ −ω).

Moreover, δ (ν +ζ −ω) = 0 except when ζ = ω −ν . Hence, from (5.12),

∫ ∞

ζ=−∞
G(ζ )

(∫ ∞

x=−∞
e+i(ν+ζ−ω)x dx

)
dζ = 2π

∫ ∞

ζ=−∞
G(ζ )δ (ν +ζ −ω)dζ

= 2πG(ω −ν).

Continuing from where we left off, we now see that

F ( f ·g)(ω)

=
(

1
2π

)2 ∫ ∞

ν=−∞
F(ν)

(∫ ∞

ζ=−∞
G(ζ )

(∫ ∞

x=−∞
e+i(ν+ζ−ω)x dx

)
dζ

)
dν

=
(

1
2π

)∫ ∞

ν=−∞
F(ν)G(ω −ν)dν

=
(

1
2π

)
F ∗G(ω),

which establishes the claim. �

7.5 The Rayleigh–Plancherel theorem

Theorem 7.8. Rayleigh–Plancherel. Let f be an integrable function. If either the func-
tion f or its Fourier transform F f is square-integrable on the real line, then so is the
other and ∫ ∞

−∞
| f (x)|2 dx =

1
2π

∫ ∞

−∞
|F f (ω)|2 dω. (7.15)

Before looking at a proof of this statement, note that both integrands are nonnegative
functions even if f or F f has complex number values. The function |F f (ω)|2 is called
the power spectrum of f , and in some physical applications actually does represent the
total power (measured in watts, for example) of a signal at a given frequency. In the
same sort of setting, the integral on the right in (7.15) represents a measure of the total
amount of power present in the system.

Computationally, the value of the theorem is that one of the integrals might be com-
paratively easy to evaluate while the other, on its own, may be difficult.
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Example 7.9. Take

f (x) =
{

1 if −1 ≤ x ≤ 1,
0 if |x| > 1.

Then ∫ ∞

−∞
| f (x)|2 dx =

∫ 1

−1
1dx = 2.

We have seen before that F f (ω) = 2
sin(ω)

ω
. Hence, by (7.15),

∫ ∞

−∞

sin2(ω)
ω 2 dω = π .

Rayleigh established this result in 1889 and used it in his analysis of black body ra-
diation. Where Rayleigh tacitly assumed that both integrals would be finite, Plancherel
proved, in 1910, that the existence of one or the other integral is indeed the only hy-
pothesis required. In other words, the relation (7.15) holds whenever either integral
exists.

Now for the proof.

Proof of Theorem 7.8. Let f be an integrable function and suppose that either f or F f
is square-integrable. We have

∫ ∞

−∞
| f (x)|2 dx =

∫ ∞

−∞
f (x) f (x)dx

=
∫ ∞

−∞
f (x) f (x)e−i(0)x dx

= F ( f · f )(0)

=
1

2π
[
(F f )∗ (F f )

]
(0) by (7.14)

=
1

2π

∫ ∞

−∞
F f (ω)F f (0−ω)dω

=
1

2π

∫ ∞

−∞
F f (ω)F f (ω)dω by (5.10)

=
1

2π

∫ ∞

−∞
|F f (ω)|2 dω .

Hence, provided one of these integrals is finite, then so is the other and the desired
relation holds. �
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7.6 Convolution in 2-dimensional space

For two functions whose inputs are polar coordinates in the plane, the convolution is
defined in terms of the radial variable only. That is, for f (t,θ) and g(t,θ), we define

( f ∗g)(t,θ) =
∫ ∞

s=−∞
f (s,θ) ·g(t − s,θ)ds. (7.16)

For two functions whose inputs are Cartesian coordinates in the plane, the convolu-
tion incorporates both variables. That is, for F(x,y) and G(x,y), we define

(F ∗G)(x,y) =
∫ ∞

t=−∞

∫ ∞

s=−∞
F(s, t) ·G(x− s,y− t)dsdt. (7.17)

As in one dimension, convolution is commutative: f ∗g = g∗ f and F ∗G = G∗F .

7.7 Convolution, B, and R

Given functions g(t,θ) (in polar coordinates) and f (x,y) (in Cartesian coordinates),
recall that the back projection and Radon transform are defined by

Bg(x,y) =
1
π

∫ π

θ=0
g(xcos(θ)+ ysin(θ),θ)dθ (7.18)

and
R f (t,θ) =

∫ ∞

s=−∞
f (t cos(θ)− ssin(θ), t sin(θ)+ scos(θ))ds. (7.19)

Proposition 7.10. (See [30], Theorem 1.3) For suitable functions g(t,θ) and f (x,y),
and arbitrary real numbers X and Y , we have

(Bg∗ f )(X ,Y ) = B(g∗R f )(X ,Y ). (7.20)

Proof. From (7.17) and (7.18), we compute

(Bg∗ f )(X ,Y )

=
∫ ∞

−∞

∫ ∞

−∞
Bg(X − x,Y − y) · f (x,y)dxdy

=
1
π

∫ ∞

−∞

∫ ∞

−∞

[∫ π

0
g((X − x)cos(θ)+(Y − y)sin(θ),θ)dθ

]
f (x,y)dxdy.
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Now substitute x = t cos(θ)−ssin(θ) and y = t sin(θ)+scos(θ). Keeping in mind that
dsdt = dxdy and using (7.19), the preceding integral becomes

=
1
π

∫ π

0

∫ ∞

−∞
g(X cos(θ)+Y sin(θ)− t,θ) ·R f (t,θ)dt dθ

=
1
π

∫ π

0
(g∗R f )(X cos(θ)+Y sin(θ),θ)dθ by (7.16)

= B(g∗R f )(X ,Y ) by (7.18).

This proves the claim. �

7.8 Low-pass filters

Let us return our attention to the filtered back-projection formula,

f (x,y) =
1
2
B

{
F−1 [|S|F (R f )(S,θ)]

}
(x,y), (7.21)

where f is some suitable function defined in the xy-plane.
Suppose there were a function φ(t) whose Fourier transform satisfied Fφ(S) = |S|.

That is, suppose Fφ were equal to the absolute-value function. Then we would get

|S|F (R f )(S,θ) = [Fφ ·F (R f )] (S,θ).

This is the product of two Fourier transforms, which we now know is equal to the
Fourier transform of the convolution of the two functions. So we would have

|S|F (R f )(S,θ) = F (φ ∗R f )(S,θ).

Hence, we would have

F−1 [|S|F (R f )(S,θ)] = F−1 [F (φ ∗R f )(S,θ)]

= (φ ∗R f )(t,θ).

Substituting this into (7.21), we would get

f (x,y) =
1
2
B (φ ∗R f )(x,y). (7.22)



64 7 Filters and Convolution

Thus, reconstruction of f would require the convolution, or filtering, of R f , the data
from the X-ray machine, with φ followed by an application of the back projection
to that. That doesn’t sound so terrible, except that there is no such function φ . The
absolute-value function is not the Fourier transform of any function.

So we might as well ignore all of the preceding discussion, right? Well, not so fast.
The filtered back-projection formula (7.21) gives a recipe for reconstructing f , but in
practice the recipe has a problem. The function |S|F (R f )(S,θ) in the formula is
highly sensitive to noise. The value of S represents a frequency that is present in a
signal. So, if the Radon transform R f , representing the X-ray data, has a component at
a high frequency, then that component is magnified by the factor |S|. That means that
noise present in the data gets exaggerated, an effect which corrupts the reconstructed
image. Thus, in practice, we don’t really want to use the factor |S| anyway.

In place of |S|, we use a function that is close to the absolute-value function for S
near 0 but that vanishes when the value of |S| is “large.” Such a function is called a low-
pass filter because the lower frequencies are not affected by its presence while higher
frequencies, including noise, get cut off. Also, in order to use the modification (7.22)
of the filtered back-projection formula, we want the function that replaces |S| to be the
Fourier transform of something. That is, we want to replace |S| with a function of the
form A = Fφ , where A is nonzero on some finite interval and zero outside that interval.

Definition 7.11. A function φ whose Fourier transform is nonzero on some finite inter-
val and zero outside that interval is called a band-limited function.

So, using this terminology, we want to replace |S| in the filtered back-projection
formula by a low-pass filter that is the Fourier transform of a band-limited function.
The price of doing this is that the formula (7.22) is no longer exact, but gives only an
approximation for f :

f (x,y) ≈ 1
2
B

(
F−1A∗R f

)
(x,y). (7.23)

.

To design a low-pass filter to replace the absolute-value function, we typically use a
function of the form

A(ω) = |ω | ·F(ω) ·L(ω), (7.24)

for some number L > 0. Thus, A(ω) vanishes for |ω | > L and has the value |ω | ·F(ω)
when |ω | ≤ L. Near the origin, the value of A should be close to the absolute value, so
we want F to be an even function for which F(0) = 1. Also, choosing A to be an even
function guarantees that φ = F−1A is real-valued. In general, the function F · L, by
which | · | is multiplied, is called the window function.

Example 7.12. Low-pass filters. Here are some of the low-pass filters most commonly
used in medical imaging. We will analyze them more closely in Section 8.2.
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• The Ram–Lak filter:

A1(ω) = |ω | ·L(ω) =
{ |ω | if |ω | ≤ L,

0 if |ω | > L,
(7.25)

where L > 0. This is simply a truncation of the absolute-value function to a finite
interval. It is the Fourier transform of a band-limited function. This filter was used
by Bracewell and Riddle [7, 8] as well as by Ramachandran and Lakshminarayanan
[35].

• The Shepp–Logan filter:

A3(ω) = |ω | ·
(

sin(πω/(2L))
πω/(2L)

)
·L(ω)

=

⎧⎨
⎩

2L
π

· |sin(πω/(2L))| if |ω | ≤ L,

0 if |ω | > L.
(7.26)

This filter was introduced by Shepp and Logan [40].

• The low-pass cosine filter:

A2(ω) = |ω | · cos(πω/(2L)) ·L(ω)

=
{ |ω |cos(πω/(2L)) if |ω | ≤ L,

0 if |ω | > L.
(7.27)

This filter is commonly used in signal analysis.

We conclude this chapter by looking at the general form of a band-limited function.
So, let f be band-limited and select a number L > 0 such that F f (ω) = 0 whenever
|ω | > L. In particular, this means that there is some function G such that

F f (ω) = L(ω) ·G(ω),

where, again, L(ω) = 1 when |ω | ≤ L and L(ω) = 0 when |ω | > L. From Example
5.15 and Theorem 5.11, we know that L is the Fourier transform of the function φ(x) =
sin(Lx)/(πx). If we let g = F−1G, then we see that F f = Fφ ·Fg, the product of
two Fourier transforms. Hence, from Theorem 7.6, it follows that F f = F (φ ∗g) and,
hence that f = φ ∗ g. This is therefore the general form that a band-limited function
must have: the convolution of the function φ , for some value of L, and some integrable
function g.
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7.9 Exercises

7.1. Use a computer algebra system to compute and plot the convolutions of various
pairs of functions. (Note: It is perfectly reasonable to form the convolution of a function
with itself !)

7.2. In this exercise, let the filter function be 1/2. (Recall that 1/2(x) = 1 for −1/2 ≤
x ≤ 1/2 and 1/2(x) = 0 when |x| > 1/2.)

(a) For g(x) = cos(x), compute (1/2 ∗g)(x) for x real.

(b) For h(x) = sin(x), compute (1/2 ∗h)(x) for x real.

(c) For F(x) = e−|x|, compute (1/2 ∗F)(x) for x real.

7.3. Suppose the function f vanishes outside the interval [a,b] and the function g van-
ishes outside the interval [c,d]. Show that the convolution f ∗ g vanishes outside the
interval [a+ c,b+d].

7.4. Apply the inverse Fourier transform F−1 to both sides of (7.13) and (7.14) to
provide companion statements about the inverse Fourier transform of a convolution
and of a product.

7.5. Show that, if f and g are suitable functions of two real variables, then

R( f ∗g)(t,θ) = (R f ∗Rg)(t,θ) (7.28)

for all values of t and θ . (Hint: This can proven either as a consequence of the central
slice theorem (Theorem 6.1) or directly from the definitions, using (7.16) and (7.17).)

7.6. (a) Compute the FWHM (full width half maximum) of the Lorentzian signal

g(ω) =
T2

1+4π2T 2
2 (ω −ω0)2

,

where T2 is a constant (one of the relaxation constants related to magnetic resonance
imaging) and the signal is centered around the angular frequency ω0.

(b) Find a value for B so that the Gaussian signal

f (ω) = T2 e−B(ω−ω0)2

has the same FWHM as the Lorentzian signal in part (a).

(c) For several values of the relaxation constant T2, plot and compare the graphs of the
signals in parts (a) and (b).
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Discrete Image Reconstruction

8.1 Introduction

We have seen that, when complete continuous X-ray data are available, then an atten-
uation-coefficient function f (x,y) can be reconstructed exactly using the filtered back-
projection formula, Theorem 6.2. To repeat,

f (x,y) =
1
2
B

{
F−1 [|S|F (R f )(S,θ)]

}
(x,y). (8.1)

In the previous chapter, in Section 7.8, we discussed the practice of replacing the
absolute-value function | · | in (8.1) with a low-pass filter A, obtained by multiplying the
absolute value by a window function that vanishes outside some finite interval. Then,
in place of (8.1), we use the approximation

f (x,y) ≈ 1
2
B

(
F−1A∗R f

)
(x,y). (8.2)

The starting point in the implementation of (8.2) in the practical reconstruction of
images from X-ray data is that only a finite number of values of R f (S,θ) are available
in a real study. This raises both questions of accuracy—How many values are needed
in order to generate a clinically useful image?—and problems of computation—What
do the various components of the formula (8.2) mean in a discrete setting? Also, as we
shall see, one step in the algorithm requires essentially that we “fill in” some missing
values. This is done using a process called interpolation that we will discuss later. Each
different method of interpolation has its advantages and disadvantages. And, of course,
the choice of the low-pass filter affects image quality.

T.G. Feeman, The Mathematics of Medical Imaging, Springer Undergraduate Texts 67
in Mathematics and Technology, DOI 10.1007/978-0-387-92712-1 8,
c© Springer Science+Business Media, LLC 2010
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8.2 Sampling

The term sampling refers to the situation where the values of a function that presumably
is defined on the whole real line are known or are computed only at a discrete set of
points. For instance, we might know the values of the function at all points of the form
k · d, where d is called the sample spacing. The basic problem is to determine how
many sampled values are enough, or what value d should have, to form an accurate
description of the function as a whole.

For example, consider a string of sampled values { f (k) = 1}, sampled at every
integer (so d = 1). These could be the values of the constant function f (x) ≡ 1, or
of the periodic function cos(2πx). If it is the latter, then we obviously would need more
samples to be certain.

Heuristically, we might think of a signal as consisting of a compilation of sine or
cosine waves of various frequencies and amplitudes. The narrowest “bump” in this
compilation is due to the wave that has the shortest wavelength and also constitutes the
smallest “feature” that is present in the signal. The reciprocal of the shortest wavelength
present in the signal is the maximum frequency that is present in the Fourier transform
of the signal. So this signal is a band-limited function—its Fourier transform is zero
outside a finite interval.

Now, suppose that f is a band-limited function for which F f (ω) = 0 whenever
|ω | > L. By definition (see (4.7)), the Fourier series coefficients of F f (where we act
as if F f has been extended beyond the interval [−L,L] to be periodic on the real line)
are given by

Cn =
(

1
2L

)∫ L

−L
F f (ω)e−iπnω/L dω , (8.3)

where n is any integer. For each integer n, then,

(2π) · f (πn/L) = 2π ·F−1(F f )(πn/L)

=
∫ ∞

−∞
F f (ω)eiωπn/L dω

=
∫ L

−L
F f (ω)eiωπn/L dω since f is band-limited

= (2L) ·C−n.

That is,
C−n = (π/L) · f (πn/L) for every integer n.

Assuming that F f is continuous, it follows from standard results of Fourier series that

F f (ω) =
∞

∑
n=−∞

C−n e−inπω/L =
(π

L

)
·

∞

∑
n=−∞

f (πn/L)e−inπω/L. (8.4)
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Finally, all of this means that, for every x, we have

f (x) = F−1(F f )(x)

=
(

1
2π

)∫ L

−L
F f (ω)eiωx dx

=
(

1
2π

)(π
L

)∫ L

−L

[
∞

∑
n=−∞

f (πn/L)e−inπω/L

]
eiωx dx from (8.4)

=
(

1
2L

) ∞

∑
n=−∞

[
f (πn/L) ·

∫ L

−L
eiω(Lx−nπ)/L dω

]

=
(

1
2L

) ∞

∑
n=−∞

f (πn/L) · (2L) ·
(

sin(Lx−nπ)
Lx−nπ

)

=
∞

∑
n=−∞

f (πn/L) ·
(

sin(Lx−nπ)
Lx−nπ

)
.

Thus we see that, for a band-limited function f whose Fourier transform vanishes
outside the interval [−L,L], the function f can be reconstructed exactly from the val-
ues { f (nπ/L) : −∞ < n < ∞}. In other words, the appropriate sample spacing for the
function f is d = π/L. Since L represents the maximum value of |ω | present in the
Fourier transform F f , the value 2π/L represents the smallest wavelength present in
the signal f . Therefore, the optimal sample spacing is equal to half of the size of the
smallest detail present in the signal. This result is known as Nyquist’s theorem and the
value d = π/L is called the Nyquist distance.

To sum up, we have established the following.

Theorem 8.1. Nyquist’s theorem. If f is a square-integrable band-limited function
such that the Fourier transform F f (ω) = 0 whenever |ω | > L, then, for every real
number x,

f (x) =
∞

∑
n=−∞

f (πn/L) · sin(Lx−nπ)
Lx−nπ

. (8.5)

Nyquist’s theorem is also sometimes referred to as Shannon–Whittaker interpolation
since it asserts that any value of the function f can be interpolated from the values
{ f (nπ/L)}.

A heuristic approach to Nyquist’s theorem. As above, assume that the function f
is band-limited with F f (ω) = 0 whenever |ω | > L. We want to extend F f to be
periodic on the whole line, so we can take the period to be 2L, the length of the interval
−L ≤ ω ≤ L. Now, each of the functions ω 	→ e−inπω/L, where n is an integer, has
period 2L. From the definition of the Fourier transform,

F f (ω) =
∫ ∞

x=−∞
f (x)e−iωx dx. (8.6)
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Approximate this integral using a Riemann sum with dx = π/L. That is, the Riemann
sum will use a partition of the line that includes all points of the form nπ/L, where n is
an integer. This results in the approximation

F f (ω) ≈
(π

L

)
·

∞

∑
n=−∞

f (nπ/L)e−inπω/L.

This approximates F f in a way that is periodic on the whole line with period 2L. No-
tice that this is the same as (8.4) except for having “≈” instead of “=.” In the proof
above, we appealed to results in the theory of Fourier series that assert that this ap-
proximation is actually an equality. Without that knowledge, we instead substitute the
approximation for F f into the rest of the proof of Nyquist’s theorem and end up with
the approximation

f (x) ≈
∞

∑
n=−∞

f (πn/L) · sin(Lx−nπ)
Lx−nπ

. (8.7)

Nyquist’s theorem, which builds on the results concerning Fourier series, asserts that
this is in fact an equality.

Oversampling. The interpolation formula (8.5) is an infinite series where, in practice,
we would only use a partial sum. However, the series (8.5) may converge fairly slowly
because the expression sin(Lx−nπ)/(Lx−nπ) is on the order of (1/n) for large values
of n and the harmonic series ∑1/n diverges. That means that a partial sum might require
a large number of terms in order to achieve a good approximation to f (x).

To address this difficulty, notice that, if F f (ω) = 0 whenever |ω |> L, and if R > L,
then F f (ω) = 0 whenever |ω | > R as well. Thus, we can use Shannon–Whittaker
interpolation on the interval [−R,R] instead of [−L,L]. This requires that the function f
be sampled at the Nyquist distance π/R instead of π/L. Since π/R < π/L, this results
in what is called oversampling of the function f . So there is a computational price to
pay for oversampling, but the improvement in the results, when using a partial sum to
approximate f (x), may be worth that price.

8.3 Discrete low-pass filters

The image reconstruction formula (8.2) involves the inverse Fourier transform F−1A
for the low-pass filter A. In practice, this too will be sampled, just like the Radon trans-
form. Nyquist’s theorem, Theorem 8.1, tells us how many sampled values are needed
to get an accurate representation of F−1A. Here, we investigate how this works for two
particular low-pass filters.
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Fig. 8.1. The Shepp–Logan filter, with L = 10, and a piecewise linear rendering of its inverse Fourier
transform from the sampled values.

Example 8.2. The Shepp–Logan filter, introduced in (7.26), is defined by

A(ω) = |ω | ·
(

sin(πω/(2L))
πω/(2L)

)
·L(ω)

=

⎧⎨
⎩

2L
π

· |sin(πω/(2L))| if |ω | ≤ L,

0 if |ω | > L,
(8.8)

for some choice of L > 0.
The inverse Fourier transform of A is a band-limited function. From the fact that A

is an even function that vanishes outside the interval [−L,L], we get, for each real
number x,

(F−1A)(x) =
1
π

∫ L

0

2L
π

· sin(πω/(2L)) · cos(xω)dω

=
(

L
π2

)
·
{

cos((x−π/(2L))ω)
x−π/(2L)

− cos((x+π/(2L))ω)
x+π/(2L)

}∣∣∣∣
L

0

=
(

L
π2

)
·
{[

cos(Lx−π/2)
x−π/(2L)

− cos(Lx+π/2)
x+π/(2L)

]

−
[

1
x−π/(2L)

− 1
x+π/(2L)

]}
. (8.9)

According to Nyquist’s theorem, the function (F−1A) can be reconstructed exactly
from its values taken in increments of the Nyquist distance π/L. Setting x = πn/L in
(8.9) yields
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(F−1A)(πn/L) =
(

L
π2

)
·
{[

cos(πn−π/2)
πn/L−π/(2L)

− cos(πn+π/2)
πn/L+π/(2L)

]

−
[

1
πn/L−π/(2L)

− 1
πn/L+π/(2L)

]}

=
(

L
π2

)
·
{

1
πn/L+π/(2L)

− 1
πn/L−π/(2L)

}

=
4L2

π3(1−4n2)
. (8.10)

Example 8.3. The Ram–Lak filter, defined in (7.25), has the formula

A(ω) = |ω | ·L(ω) =
{ |ω | if |ω | ≤ L,

0 if |ω | > L.
(8.11)

Proceeding as in the previous example, we find that the inverse Fourier transform of
the Ram–Lak filter satisfies

(F−1A)(x) =
1
π

∫ L

0
ω · cos(xω)dω

=
(

1
π

)
·
{

cos(xω)+(xω) · sin(xω)
x2

}∣∣∣∣
L

0

=
(

1
π

)
·
{

cos(Lx)+(Lx) · sin(Lx)−1
x2

}

=
(

1
π

)
·
{

(Lx) · sin(Lx)
x2 − 2 · sin2(Lx/2)

x2

}
, (8.12)

where the trigonometric identity cos(θ) = 1−2 · sin2(θ/2) was used in the last step.
As before, set x = πn/L to evaluate (F−1A) at multiples of the Nyquist distance

π/L. Thus,

(F−1A)(πn/L) =
(

1
π

)
·
{

(πn) · sin(πn)
(πn/L)2 − 2 · sin2(πn/2)

(πn/L)2

}

=
L2

2π
·
{

2 · sin(πn)
πn

−
[

sin(πn/2)
(πn/2)

]2
}

. (8.13)

For the Ram–Lak filter, we have (F−1A)(0) = L2/(2π). For nonzero even values of
n, we get (F−1A)(πn/L) = 0, while for n odd the value is given by (F−1A)(πn/L) =
−2L2/(π3 ·n2).

Example 8.4. The low-pass cosine filter, defined in (7.27), is left for the exercises.
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Fig. 8.2. The Ram–Lak filter, with L = 10, and a piecewise linear rendering of its inverse Fourier
transform from the sampled values.

8.4 Discrete Radon transform

In the context of a CT scan, the X-ray machine does not assess the attenuation along
every line �t,θ . Instead, in the model we have been using, the Radon transform is sam-
pled for a finite number of angles θ between 0 and π and, at each of these angles, for
some finite number of values of t . Both the angles and the t values are evenly spaced.
So, in this model, the X-ray sources rotate by a fixed angle from one set of readings to
the next and, within each setting, the individual X-ray beams are evenly spaced. This is
called the parallel beam geometry.

If the machine takes scans at N different angles, then Δθ = π/N and the specific
values of θ that occur are {kπ/N : 0 ≤ k ≤ N − 1}. We are assuming that the beams
at each angle form a set of parallel lines. The spacing between these beams, say d, is
called the sample spacing. For instance, suppose there are 2 ·M+1 parallel X-ray beams
at each angle. With the object to be scanned centered at the origin, the corresponding
values of t are { j · d : −M ≤ j ≤ M}. (The specific values of M and d essentially
depend on the design of the machine itself and on the sizes of the objects the machine
is designed to scan.) Thus, the continuous Radon transform R f is replaced by the
discrete function RD f defined by

RD f j,k = R f ( jd,kπ/N), (8.14)

for −M ≤ j ≤ M and 0 ≤ k ≤ (N −1).
To implement formula (8.2), we must now decide what we mean by the convolu-

tion of two functions for which we have only sampled values. At the same time, we
will adopt some rules and conventions for dealing with discretely defined functions in
general.



74 8 Discrete Image Reconstruction

8.5 Discrete functions and convolution

A discrete function of one variable is a mapping from the integers into the set of real or
complex numbers. In other words, a discrete function g may be thought of as a two-way
infinite list, or sequence, of real or complex numbers {. . . , g(−2), g(−1), g(0), g(1),
g(2), . . .}. For a discrete function g, we customarily identify gn = g(n) for all integers n.

Definition 8.5. In analogy with the integral that defines continuous convolution, the
discrete convolution of two discrete functions f and g, denoted by f ∗̄g, is defined by

( f ∗̄g)m =
∞

∑
j=−∞

f j ·g(m− j) for each integer m. (8.15)

As with infinite integrals, there is the issue, which we evade for the time being, of
whether this sum converges.

Proposition 8.6. A few properties of discrete convolution are

(i) f ∗̄g = g ∗̄ f ,

(ii) f ∗̄(g+h) = f ∗̄g+ f ∗̄h, and

(iii) f ∗̄(αg) = α( f ∗̄g),

for suitable functions f , g, and h, and for any constant α .

In practice, we typically know the values of a function f only at a finite set of points,
say {k ·d : k = 0,1, . . . , (N −1)}, where N is the total number of points at which f has
been computed and d is the sample spacing. For simplicity, let fk = f (kd) for each k
between 0 and (N − 1) and use the set of values { f1, f2, . . . , fN−1} to represent f as
a discrete function. There are two useful ways to extend this sequence to one that is
defined for all integers. The simplest approach is just to pad the sequence with zeros by
setting fk = 0 whenever k is not between 0 and N−1. A more intriguing, and ultimately
more useful, idea is to extend the sequence to be periodic with period N. Specifically,
for any given integer m, there is a unique integer n such that 0 ≤ m + n ·N ≤ (N − 1).
We define fm = fm+n·N . Thus, fN = f0, f−1 = fN−1, fN+1 = f1, and so on. This defines
the discrete function f = { fk} as a periodic function on the set of all integers. We will
refer to such a function as an N-periodic discrete function.

Definition 8.7. For two N-periodic discrete functions f = { fk : 0 ≤ k ≤ N − 1} and
g = {gk : 0 ≤ k ≤ N − 1}, the discrete convolution, denoted as before by f ∗̄g, is
defined by

( f ∗̄g)m :=
N−1

∑
j=0

f j ·g(m− j) for each integer m. (8.16)
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This is obviously similar to Definition 8.5 except that the sum extends only over one
full period rather than the full set of integers. Notice that when m and j satisfy 0 ≤
m, j ≤ (N −1), then the difference (m− j) satisfies |m− j| ≤ (N −1). The periodicity
of the discrete functions enables us to assign values to the discrete convolution function
outside the range 0 to (N −1), so that f ∗̄g also has period N.

The two versions of discrete convolution in (8.15) and (8.16) can be reconciled if
one of the two functions has only finitely many nonzero values.

Proposition 8.8. Let f and g be two-way infinite discrete functions and suppose there
is some natural number K such that gk = 0 whenever k < 0 or k ≥ K. Let M be an

integer satisfying M ≥K−1 and let f̃ and g̃ be the (2M+1)-periodic discrete functions

defined by f̃ (m) = f (m) and g̃(m) = g(m) for −M ≤ m ≤ M. Then, for all m satisfying
0 ≤ m ≤ K −1,

( f ∗̄g)m =
(

f̃ ∗̄ g̃
)

(m). (8.17)

Proof. Let f , g, K, M, f̃ , and g̃ be as stated. For each pair of integers m and j satisfying
0 ≤ m, j ≤ K − 1, it follows that |m− j| ≤ K − 1. Thus, since M ≥ K − 1, we get that
f (m− j) = f̃ (m− j). Now fix a value of m with 0 ≤ m ≤ K − 1. From the definition
(8.15) and the properties of ∗̄, we have

( f ∗̄g)m =
∞

∑
j=−∞

f (m− j) ·g( j)

=
K−1

∑
j=0

f (m− j) ·g( j)

=
K−1

∑
j=0

f̃ (m− j) ·g( j)

=
M

∑
j=−M

f̃ (m− j) · g̃( j)

=
(

f̃ ∗̄ g̃
)

(m). �

What is really going on in this proposition? Well, there are a few worries when it
comes to using periodic discrete functions. One concern is that it may not be clear what
the appropriate period is. So, we might sample a finite set of values of a continuous
periodic function, but the values we compute might not correspond to a full period.
Then, when we extend the data to form a discrete periodic function, we have the wrong
one. Or, the function whose values we have sampled might not be periodic at all. Then
we ought not to use a periodic discrete function to model it. The proposition offers a
remedy that is known as zero padding: we can take a finite set of values of a function
(g) and, by padding the sequence of values with a lot of zeros, form a periodic discrete
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function (g̃) in such a way that the periodic discrete convolution gives the same value as
the “true” discrete convolution, at least at the points where the value has been sampled.

For an illustration of the benefits of zero padding, consider the function 1/2 defined,
as before, by

1/2(x) =
{

1 if −1/2 ≤ x < 1/2,
0 otherwise.

Suppose we sample 1/2 at two points x = −1/2 and x = 0 and, so generate the 2-
periodic discrete function f with f0 = f1 = 1. For the periodic discrete convolution
f ∗̄ f , we get

( f ∗̄ f )0 = 1 ·1+1 ·1 = 2 and

( f ∗̄ f )1 = 1 ·1+1 ·1 = 2.

Now pad the function f with a couple of zeros to get the 4-periodic function f̃ =
{1,1,0,0}. (We could also think of this as sampling the function 1/2 at the x values
−1/2, 0, 1/2, and 1.) Then we get

( f̃ ∗̄ f̃ )0 = 1 ·1+1 ·0+0 ·0+0 ·1 = 1,

( f̃ ∗̄ f̃ )1 = 1 ·1+1 ·1+0 ·0+0 ·0 = 2,

( f̃ ∗̄ f̃ )2 = 1 ·0+1 ·1+0 ·1+0 ·1 = 1, and

( f̃ ∗̄ f̃ )3 = 1 ·0+1 ·0+0 ·1+0 ·1 = 0.

Instead of accurately representing 1/2, the function f acts like a constant, and so f ∗̄ f
is constant, too. But f̃ does a better job of representing 1/2, and the convolution f̃ ∗̄ f̃ is
a discrete version of the function 2(1/2 ∗1/2) = 2(1−|x|), for −1 ≤ x < 1, sampled
at the x values −1/2, 0, 1/2, and 1.

Importantly, Proposition 8.8 applies to the discrete convolution of the sampled band-
limited function F−1A, where A is a low-pass filter, and the sampled Radon transform
RD f , where f is the attenuation function we wish to reconstruct. Since the scanned
object is finite in size, we can set RD f ( j,θ) = 0 whenever | j| is sufficiently large.
Thus, with enough zero padding, the discrete Radon transform (8.14) can be extended
to be periodic in the radial variable ( jd), and (8.17) shows how to compute the desired
discrete convolution.

For discrete functions defined using polar coordinates, the discrete convolution is
carried out in the radial variable only. In particular, for a given filter A, we compute
the discrete convolution of the sampled inverse Fourier transform of A with the discrete
Radon transform of f as

(
F−1A ∗̄RD f

)
m,θ =

N−1

∑
j=0

F−1A j ·RD fm− j,θ . (8.18)
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8.6 Discrete Fourier transform

For a continuous function f , the Fourier transform is defined by

F f (ω) =
∫ ∞

−∞
f (x)e−iωx dx

for every real number ω . For a discrete analogue to this, we consider an N-periodic dis-
crete function f . Replacing the integral in the Fourier transform by a sum and summing
over one full period of f yields the expression

N−1

∑
k=0

fk e−iωk.

Now take ω to have the form ω j = 2π j/N. Then, for each choice of k, we get e−iω jk =
e−i2πk j/N . This is a periodic function with period N in the j variable, just as fk has
period N in the k variable. In this way, the Fourier transform of the discrete function f
is also a discrete function, defined for ω j , with j = 0,1, . . . , (N − 1), and extended by
periodicity to every integer.

Definition 8.9. The discrete Fourier transform, denoted by FD, transforms an N-peri-
odic discrete function f into another N-periodic discrete function FD f defined by

(FD f ) j =
N−1

∑
k=0

fk e−i2πk j/N for j = 0,1, . . . , (N −1). (8.19)

For other integer values of j, the value of (FD f ) j is defined by the periodicity require-
ment.

Remark 8.10. In the summation (8.19), we can replace the range 0 ≤ k ≤ (N − 1) by
any string of the form M ≤ k ≤ (M + N −1), where M is an integer. This is due to the
periodicity of the discrete function f .

Example 8.11. Fix a natural number M and set

fk =
{

1 if −M ≤ k ≤ M,
0 otherwise.

Now let N > 2M and think of f as being an N-periodic discrete function. (Thus, f
consists of a string of 1s possibly padded with some 0s.) We might think of f as a dis-
crete sampling of the characteristic function of a finite interval. The continuous Fourier
transform of a characteristic function is a function of the form asin(bx)/x.
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Fig. 8.3. Continuous and discrete Fourier transforms of a square wave. Zero padding has been used in
the sampling of the square wave. The “wrap around” in the second picture illustrates the N-periodic
behavior of the discrete transform.

In the discrete setting, use the periodicity of f to compute, for each j = 0,1, . . . ,N−1,

(FD f ) j =
M

∑
k=0

e−2πik j/N +
N−1

∑
k=N−M

e−2πik j/N

= e0 +
M

∑
k=1

(
e−2πik j/N + e−2πi(N−k) j/N

)

= 1+2 ·
M

∑
k=1

cos(2πk j/N)

= 2 · (1/2+ cos(2π j/N)+ cos(2π2 j/N)+ · · ·+ cos(2πM j/N))

= 2 · sin((M +1/2) ·2π j/N)
2 · sin(π j/N)

=
sin((2M +1)π j/N)

sin(π j/N)
.

We have used the identity

1/2+ cos(θ)+ cos(2θ)+ · · ·+ cos(Mθ) =
sin((M +1/2)θ)

2 · sin(θ/2)
. (8.20)

Figure 8.3 shows a comparison, with M = 8 and N = 20, of the graph of

y =
sin((2 ·M +1)x/2)

x/2

with the set of points
(

2π j/N,
sin((2 ·M +1)π j/N)

sin(π j/N)

)
,
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where the point (0, (2 ·M +1)) corresponds to j = 0. The diagram on the left shows the
situation for 0≤ x ≤ 2π and j = 0,1, . . . ,N−1. While the curve continues its decay, the
points representing the discrete Fourier transform reveal the N-periodic behavior. In the
diagram on the right, the interval is −π ≤ x ≤ π , corresponding to j =−N/2, . . . ,N/2.
In comparing the two diagrams, we can see how the N-periodic behavior of the discrete
Fourier transform works.

Where there is a discrete Fourier transform, there must also be an inverse transform.
Indeed, the formula (8.2) demands it. To this end, we have the following.

Definition 8.12. For an N-periodic discrete function g, the discrete inverse Fourier
transform of g is the N-periodic function defined by

(F −1
D g)n =

1
N

N−1

∑
k=0

gk ei2πkn/N , for n = 0, . . . ,N −1. (8.21)

For example, we have already computed the discrete inverse Fourier transforms for
the Shepp–Logan and Ram–Lak low-pass filters, respectively, in (8.10) and (8.13).

The discrete analogue of the Fourier inversion theorem (Theorem 5.11) holds.

Theorem 8.13. For a discrete function f with period N,

F −1
D (FD f )n = fn for all integers n. (8.22)

Before we prove this theorem, we need the following fact about roots of unity.

Lemma 8.14. For any nonzero integers M and N,

N−1

∑
k=0

ei2πMk/N =
{

N if M/N is an integer,
0 if M/N is not an integer.

(8.23)

Proof. If M/N is an integer, then ei2πMk/N = 1 for every integer k, from which it follows
that ∑N−1

k=0 ei2πMk/N = N.

If M/N is not an integer, then
(
ei2πM/N

)N − 1 = 0, but ei2πM/N �= 1. Since the ex-
pression xN −1 factors as xN −1 = (x−1)(1+ x+ x2 + · · ·+ xN−1), it follows that

1+ ei2πM/N +
(

ei2πM/N
)2

+ · · ·+
(

ei2πM/N
)N−1

= 0.

That is,
N−1

∑
k=0

ei2πMk/N = 0

as claimed. �
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Proof of Theorem 8.13. For a given integer n with 0 ≤ n ≤ (N −1), compute

F −1
D (FD f )n =

1
N

N−1

∑
k=0

(FD f )k ei2πkn/N

=
1
N

N−1

∑
k=0

(
N−1

∑
m=0

fm e−i2πmk/N

)
ei2πkn/N

=
1
N

N−1

∑
m=0

[
fm

(
N−1

∑
k=0

ei2π(n−m)k/N

)]
.

When m = n, we have ei2π(n−m)k/N = 1 for every k. So

N−1

∑
k=0

ei2π(n−m)k/N = N when m = n.

However, when m �= n, then Lemma 8.14 asserts that

N−1

∑
k=0

ei2π(n−m)k/N = 0.

It follows that

1
N

N−1

∑
m=0

[
fm

(
N−1

∑
k=0

ei2π(n−m)k/N

)]
=

1
N

[ fn ·N] = fn.

That is, F −1
D (FD f )n = fn for 0 ≤ n ≤ (N − 1) and, by periodicity, for all inte-

gers n. �
Were we so inclined, we could establish properties about linearity, shifting, and so

on for the discrete Fourier transform and its inverse. However, our focus is on the imple-
mentation of the formula (8.2), so our priority must be to study the interaction between
the discrete Fourier transform and discrete convolution. In particular, the following the-
orem holds.

Theorem 8.15. For two discrete functions f = { fk : 0 ≤ k ≤ N −1} and g = {gk : 0 ≤
k ≤ N −1} with the same period, we have

FD ( f ∗̄g) = (FD f ) · (FDg) . (8.24)

In words, the discrete Fourier transform of a convolution is the product of the discrete
transforms individually.
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Proof. For each integer n such that 0 ≤ n ≤ (N −1),

(FD f )n · (FDg)n =

(
N−1

∑
k=0

fk e−2πink/N

)
·
(

N−1

∑
�=0

g� e−2πin�/N

)

=
N−1

∑
k=0

fk

(
−k+N−1

∑
�=−k

g� e−2πin�/N

)
e−2πink/N (by periodicity of g)

=
N−1

∑
k=0

fk

(
N−1

∑
j=0

g j−k e−2πin( j−k)/N

)
e−2πink/N (where j = k + �)

=
N−1

∑
j=0

N−1

∑
k=0

(
fk ·g j−k e−2πin j/N

)

=
N−1

∑
j=0

(
N−1

∑
k=0

fk ·g j−k

)
e−2πin j/N

=
N−1

∑
j=0

( f ∗̄g) j e−2πin j/N

= [FD ( f ∗̄g)]n ,

which is the desired result. �
We conclude this section by mentioning a few results that are discrete versions of

some of the results from earlier chapters. The proofs are left as exercises.

Proposition 8.16. In analogy to (7.14), for two discrete N-periodic functions f and g,

FD( f ·g) =
1
N

(FD f ) ∗̄(FDg) . (8.25)

For a discrete function f , define the conjugate function f by setting f k = fk for every
k. In analogy to (5.10), we have the following fact.

Proposition 8.17. For an N-periodic discrete function f ,

(
FD f

)
j = (FD f )− j (8.26)

for all j.

There is also a discrete version of the Rayleigh–Plancherel theorem, Theorem 7.8:

Proposition 8.18. For an N-periodic discrete function f ,

N−1

∑
n=0

| fn|2 =
1
N

N−1

∑
n=0

|(FD f )n|2. (8.27)
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8.7 Discrete back projection

In the continuous setting, the back projection is defined by

Bh(x,y) :=
1
π

∫ π

θ=0
h(xcos(θ)+ ysin(θ),θ)dθ . (8.28)

Definition 8.19. In the discrete setting, the continuously variable angle θ is replaced by
the discrete set of angles {kπ/N : 0 ≤ k ≤ N − 1}. So the value of dθ becomes π/N
and the back-projection integral is replaced by the sum

BDh(x,y) =
(

1
N

)N−1

∑
k=0

h(xcos(kπ/N)+ ysin(kπ/N),kπ/N). (8.29)

This is to be applied to h = (F −1
D A) ∗̄(RD f ). The obstacle here is that the re-

construction grid, within which the final image is to be presented, is a rectangular
array of pixels, located at points {(xm,yn)}, each of which is to be assigned a color
or greyscale value. Thus, the discrete back projection (8.29) requires the values of
(F −1

D A) ∗̄(RD f ) at the corresponding points {(xm cos(kπ/N)+yn sin(kπ/N),kπ/N)}.
However, the Radon transform samples and the values of (F −1

D A) ∗̄(RD f ) are known
only at the points {( jd,kπ/N)}. These points are arranged in a polar grid and generally
do not match up with the points needed.

To overcome this obstacle, observe that, for a given (x,y) and a given k, the number
xcos(kπ/N)+ysin(kπ/N) will lie in between two multiples of d. That is, there is some
value n such that

nd ≤ xcos(kπ/N)+ ysin(kπ/N) < (n+1)d.

Hence, we wish to interpolate a value for (F −1
D A) ∗̄(RD f ) at the point (xcos(kπ/N)+

ysin(kπ/N),kπ/N), using the known values at nearby points.

8.8 Interpolation

When we are given (or have computed) a discrete set of values fk = f (xk) at a finite
set of inputs {xk}, the process of somehow assigning values f (x) for inputs x between
the distinct {xk} in order to create a continuous or, at least, piecewise continuous func-
tion defined on an interval is called interpolation. Exactly how the interpolated values
are assigned depends on factors such as what additional properties (continuous, dif-
ferentiable, infinitely differentiable, et cetera) the function is to have, the degree of
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computational difficulty incurred in assigning the new values, and more. Let us look at
some interpolation schemes that are commonly used.

Nearest neighbor. Given the values { f (xk)}, the value f (x) is assigned to be the same
as the value of f at the input xk that is nearest to x. This creates a step function that steps
up or down halfway between successive values of xk. This is computationally simple,
but the interpolated function is not continuous, and what to do at the halfway points
between the xks is not clear.

Linear. Literally just “connect the dots,” thus creating a continuous function composed
of line segments. Computationally, for x lying between xk and xk+1, we set

f (x) =
(

f (xk+1)− f (xk)
xk+1 − xk

)
· (x− xk)+ f (xk). (8.30)

This method is often used in medical imaging. It is computationally simple and pro-
duces a continuous function f .

Cubic spline. Successive points (xk, f (xk)) and (xk+1, f (xk+1)) are connected by part
of a cubic curve, y = ax3 + bx2 + cx + d. The pieces are joined together so that the re-
sulting overall curve has a continuous second-order derivative. In addition to the values
f (xk), values for the derivative f ′(xk) are prescribed. Cubic splines are computationally
more complicated than linear interpolation, but are still manageable. Computing the co-
efficients of each cubic piece involves solving a system of linear equations. Splines are
commonly used in a variety of engineering applications, including medical imaging.

Lagrange, or polynomial, interpolation. When N + 1 data points are known, then it
is possible to fit a polynomial of degree N to the data. For instance, three noncollinear
points determine a parabola. Generally, a polynomial of degree N has N +1 coefficients.
The N + 1 data points provide N + 1 equations that these coefficients must satisfy. A
general formula, given values of f (xk) for k = 1, . . . ,N +1, is

f (x) =
N+1

∑
j=1

f (x j) · ∏k �= j (x− xk)
∏k �= j (x j − xk)

. (8.31)

Notice that, if we take x = xn for some n, then the formula (8.31) yields f (x) = f (xn)
as it should. So the formula agrees with the data.

To see how the interpolation process can be generalized, take a closer look at nearest-
neighbor interpolation. We start with a discrete function g, where g(m) denotes the
value of g at the sample point m ·d, and we want to construct an interpolated function
I (g) using the nearest-neighbor method. For a given value x, the sample point m · d
is the nearest neighbor to x exactly when |x − m · d| < d/2, or, equivalently, when
|(x/d)−m| < 1/2. It follows that
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I (g)(x) = ∑
m

g(m) ·1/2

( x
d
−m

)
, for all x, (8.32)

where, as usual,

1/2(x) =
{

1 if |x| < 1/2,
0 if |x| > 1/2.

(For x = ±1/2, make a slight modification by assigning the value +1 to one and 0 to
the other, depending whether we want to consider −1/2 or +1/2 as “closer” to 0.) This
approach offers a nice compact formula for nearest-neighbor interpolation.

Adopting a similar approach to linear interpolation, suppose that a given x satisfies

m∗ ·d ≤ x < (m∗ +1) ·d

for some integer m∗. Then
∣∣∣ x
d
−m∗

∣∣∣ ≤ 1,∣∣∣ x
d
− (m∗ +1)

∣∣∣ ≤ 1,

and, for all integers m other than m∗ and (m∗ +1),
∣∣∣ x
d
−m

∣∣∣ > 1.

Consider again the “tent” function
∧

, defined by

∧
(x) =

{
1−|x| if |x| ≤ 1,
0 if |x| > 1.

For a discrete function g, evaluated at the sample points {m ·d}, and the corresponding
function I (g) obtained from g by linear interpolation, we get, for x satisfying m∗ ·d ≤
x < (m∗ +1) ·d,

I (g)(x) =
g(m∗ +1)−g(m∗)

d
· (x−m∗ ·d)+g(m∗)

= (g(m∗ +1)−g(m∗)) ·
( x

d
−m∗

)
+g(m∗)

= g(m∗)
(

1−
( x

d
−m∗

))
+g(m∗ +1)

( x
d
−m∗

)

= g(m∗)
(

1−
∣∣∣ x
d
−m∗

∣∣∣
)

+g(m∗ +1)
(

1−
∣∣∣ x
d
− (m∗ +1)

∣∣∣
)

= ∑
m

g(m) ·∧
( x

d
−m

)
. (8.33)

Generalizing this approach, we can design an interpolation method like so.
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Definition 8.20. For a selected weighting function W , satisfying the conditions below,
the W -interpolation IW (g) of a discrete function g is defined by

IW (g)(x) = ∑
m

g(m) ·W
( x

d
−m

)
for −∞ < x < ∞. (8.34)

Of course, for this to be reasonable, the weighting function W should satisfy a few
conditions. For instance, if g is real-valued, bounded, or even, then IW (g) should be
too, which means that W should be real-valued, bounded, and even. Also, at the sample
points, we expect the interpolation to be exact. That is, for any integer k, we expect
IW (g)(k · d) = g(k), which implies that W (0) = 1 and that W (m) = 0 for all inte-
gers m �= 0. Lastly, for purposes of integration, it would be nice for W -interpolation to
“preserve areas” in the sense that the integral of the W -interpolated function IW (g) is
actually equal to the approximation we get when we apply the trapezoidal rule to the
sampled points {(m ·d,g(m))}. That is, we would like to have

∫ ∞

−∞
IW (g)(x)dx = d ·∑

m
g(m). (8.35)

To see what this implies about W , observe that, for each integer m,
∫ ∞

−∞
W

( x
d
−m

)
dx = d ·

∫ ∞

−∞
W (u−m)du where u = x/d

= d ·
∫ ∞

−∞
W (u)du.

In particular, the value of the integral is independent of m. From (8.34), we now
compute

∫ ∞

−∞
IW (g)(x)dx =

∫ ∞

−∞

{
∑
m

g(m) ·W
( x

d
−m

)}
dx

= ∑
m

g(m) ·
∫ ∞

−∞
W

( x
d
−m

)
dx

= d ·
∫ ∞

−∞
W (u)du ·∑

m
g(m).

(The interchange of the summation and the integral is valid because we are summing
over finitely many m.) Thus, for (8.35) to hold, we want W to satisfy

∫ ∞

−∞
W (u)du = 1.

In addition to the functions 1/2 and
∧

considered above, the function x 	→ sin(πx)
(πx)satisfies these conditions on the weighting function.
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Interpolation and convolution. For a discrete function g and a weighting function W ,
let IW (g) be as in (8.34). Suppose also that g = φ ∗̄ f for some discrete functions φ
and f . That is, suppose that, for each m,

g(m) = ∑
k

φ(m− k) · f (k).

Then, for each x,

IW (g)(x) = ∑
m

(
∑
k

φ(m− k) · f (k)
)
·W

( x
d
−m

)

= ∑
k

(
∑
m

φ(m− k) ·W
( x

d
−m

))
· f (k)

= ∑
k

(
∑
m

φ(m− k) ·W
(

x− kd
d

− (m− k)
))

f (k). (8.36)

It is tempting to mistake the sum ∑m φ(m− k) ·W (((x− kd)/d)− (m− k)) in (8.36)
for the interpolated function IW (φ)(x− kd). The discrete function φ is periodic after
all, so shifting the summation from summing over m to summing over (m−k) shouldn’t
matter. However, W is not periodic, so there is a glitch when k = N −1 for N-periodic
functions. That’s where φ “wraps around” but W does not. Nonetheless, it is almost
correct to say that these two expressions are the same. So, from (8.36), we can write

IW (φ ∗̄ f )(x) ≈ ∑
k

IW (φ)(x− kd) · f (k). (8.37)

The expression on the left in (8.37) represents an interpolation of the filtered form of
f . On the right, the interpolation is brought inside and the expression has the form of a
weighted sum of the values { f (k)}, where the weight depends on the distance between
x and the sampled point kd.

8.9 Discrete image reconstruction

We have now examined the discrete versions of all of the elements of the formula (8.2),
used to approximate the image f starting from a discrete set of samples of its Radon
transform.

Image Reconstruction Algorithm I. In the implementation of the discrete filtered
back-projection algorithm (8.2), the function to be interpolated is (F −1

D A) ∗̄(RD f ),
where A is the low-pass filter used in place of the absolute-value function. For
simplicity of notation, let us denote the interpolated function by I . That is, the
value I (t,kπ/N) is interpolated, according to the selected interpolation method, from
the computed values (F −1

D A) ∗̄(RD f )( jd,kπ/N). For each lattice point (xm,yn) in the
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reconstruction grid, we then approximate

f (xm,yn) ≈
(

1
2

)
BDI (xm,yn)

=
(

1
2N

)N−1

∑
k=0

I

(
xm cos

(
kπ
N

)
+ yn sin

(
kπ
N

)
,

kπ
N

)
. (8.38)

Image Reconstruction Algorithm II. Alternatively, we can use the approach indicated
by (8.37). Instead of interpolating the filtered Radon transform (F −1

D A) ∗̄(RD f ), we
interpolate the filter itself and then form a weighted sum of the sampled values of the
Radon transform. That is, we replace each value of I in (8.38) by the weighted sum

W (k) = ∑
j

IF −1
D A

(
xm cos

(
kπ
N

)
+ yn sin

(
kπ
N

)
− jd

)
·RD f

(
jd,

kπ
N

)
.

This leads to a different approximation to the discrete filtered back projection given by

f (xm,yn) ≈
(

1
2N

)N−1

∑
k=0

W (k). (8.39)

Now let’s try to put this all together.

Example 8.21. As a first example, define a radially symmetric attenuation function f
by

f (x,y) =

⎧⎪⎪⎨
⎪⎪⎩

1/2 if x2 + y2 ≤ 1/16,
1/4 if 1/16 < x2 + y2 ≤ 1/4,
1 if 1/4 < x2 + y2 ≤ 9/16,
0 if 9/16 < x2 + y2.

Recalling that we computed the Radon transform of a disc in Chapter 2, and using the
linearity of the Radon transform, we get that

R f (t) =

⎧⎪⎪⎨
⎪⎪⎩

(1/2)
√

9−16t2 − (3/4)
√

1−4t2 +(1/8)
√

1−16t2 if |t| ≤ 1/4,
(1/2)

√
9−16t2 − (3/4)

√
1−4t2 if 1/4 < |t| ≤ 1/2,

(1/2)
√

9−16t2 if 1/2 < |t| ≤ 3/4,
0 if 3/4 < |t|.

This is independent of θ because of the radial symmetry of f . The graphs of f and of
R f (t) are shown in Figure 8.4.

In the rest of this example, the sample spacing is taken to be d = 0.05. The corre-
sponding values of the Radon transform are R f (0.05 · k) for −20 ≤ k ≤ 20.

For the filter, we will use the Shepp–Logan filter defined in (8.8). Its discrete in-
verse Fourier transform is given in (8.10). The sample spacing used in that computation
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Fig. 8.4. A radially symmetric attenuation function and its Radon transform.

was π/L. However, those values were computed from the continuous inverse Fourier
transform, as in (5.16). To compensate for the presence of the additional factor of 2π in
the complex exponential in the definition (8.21), we should modify the sample spacing
from π/L to π/(2πL), or simply 1/(2L). To match up the sample spacing of this filter
with that of the Radon transform, we want 1/(2L) = d = 0.05; so L = 10. That is, for
this example we use the Shepp–Logan filter given by

A(ω) =
{

(20/π) · |sin(.05πω)| if |ω | ≤ 10,
0 if |ω | > 10.

Its discrete inverse Fourier transform is given by

(F −1
D A)n =

400
π3(1−4n2)

.

The graphs of A and F −1
D A are shown in Figure 8.1.

Next, we compute the discrete convolution (F −1
D A) ∗̄R f , as defined in (8.16). De-

note this discrete function by γ , for short. So, for −19 ≤ m ≤ 20,

γ(m) =
20

∑
j=−19

(F −1
D A)(m− j) ·R f (.05 · j)

=
20

∑
j=−19

400
π3(1−4(m− j)2)

·R f (.05 · j).

Applying linear interpolation to γ as in (8.33), the interpolated function h is given by

h(t) =
20

∑
m=−19

γ(m) ·∧(20t −m) for −1 ≤ t ≤ 1.
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Fig. 8.5. The linear interpolation h of (F −1
D A) ∗̄R f .

Of course, both γ and h are independent of θ because R f is. The graph of h is shown
in Figure 8.5.

Finally, we implement the formula (8.38), from Image Reconstruction Algorithm I,
with the angle θ sampled in increments of π/18. We get

f (x,y) ≈
(

1
36

) 17

∑
k=0

h(xcos(kπ/18)+ ysin(kπ/18)).

On a 100 × 100 grid in the square {(x,y) : −1 ≤ x ≤ 1,−1 ≤ y ≤ 1} this yields the
picture shown on the left in Figure 8.6. Doubling the number of angle samples to 36
yields the picture shown on the right.

Example 8.22. Now consider the crescent-shaped phantom illustrated in Figure 2.2 and
defined by the attenuation function in (2.8). This time, we use the Ram–Lak filter

−1 −0.5 0.50 1
x

−1

−0.5

0.5

0

1

y

−1 −0.5 0.50 1
x

−1

−0.5

0.5

0

1

y

Fig. 8.6. The discrete filtered back-projection reconstruction of the “bull’s-eye.” Algorithm (8.38)
was used with sample spacing d = 0.05. The angle was sampled in increments of π/18 on the left
and π/36 on the right.
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Fig. 8.7. The discrete filtered back-projection algorithm (8.39) applied to a crescent-shaped phantom
with sample spacing d = 0.05. The angle is sampled in increments of π/18 on the left and π/36 on
the right.

defined in (8.11). As in the previous example, in order to match the sample spacing
of the discrete inverse transform of the low-pass filter with that of the Radon transform,
we set L = 1/(2d). Taking d = 0.05 as before, we therefore take L = 10 in (8.13). That
is, the filter is given by

A(ω) =
{ |ω | if |ω | ≤ 10,

0 if |ω | > 10,

and its discrete inverse Fourier transform is given by

(F −1
D A)n =

50
π

·
{

2 · sin(πn)
πn

−
[

sin(πn/2)
(πn/2)

]2
}

.

This is pictured in Figure 8.2.
When we apply Image Reconstruction Algorithm II, given by (8.39), with linear

interpolation, the results are shown in Figure 8.7.

Example 8.23. Image comparison. By altering the choices of algorithm, low-pass fil-
ter, interpolation method, and sample spacings, we can create a variety of reconstruc-
tions of the same phantom. Comparing the results helps us to assess how our choices
affect the results. For example, the illustrations on the left sides of Figures 8.7 and 8.8
differ only in the choice of low-pass filter—Ram–Lak compared to Shepp–Logan. The
picture on the right in Figure 8.8 depicts the difference between the two images. Loca-
tions where the two agree are shown as neutral grey; lighter or darker gradations of grey
indicate locations where the two reconstructions differ. For instance, the differences are
most pronounced at the outer ring of the crescent, where we see both a bright band and
a dark band in the picture.
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Fig. 8.8. On the left, algorithm (8.39) is applied to the crescent-shaped phantom using the Shepp–
Logan filter with sample spacing d = 0.05 and angle increments of π/18. The figure on the right
depicts the difference between this reconstruction and the one on the left in Figure 8.7, which used
the Ram–Lak filter.

8.10 Matrix forms

For a discrete function f = 〈 f0, . . . , fN−1〉 having period N, we have defined the discrete
Fourier transform of f to be the discrete function F = 〈F0, . . . ,FN−1〉, also having period
N, satisfying

Fj =
N−1

∑
k=0

fk e−i2πk j/N for j = 0,1, . . . , (N −1).

Setting wN := e−i2π/N , we have e−i2πk j/N = (wN)k j. Thus, in matrix form,

Fj =
[

1 (wN) j (wN)2 j · · · (wN)(N−1) j
]
⎡
⎢⎢⎢⎢⎢⎣

f0

f1

f2
...

fN−1

⎤
⎥⎥⎥⎥⎥⎦

. (8.40)

Denote by WN the N ×N matrix whose entry in row j and column k is the number
(wN)k j. It follows from (8.40) that the discrete Fourier transform of f is given by

FD f = WN f, (8.41)

where f is viewed as a column vector in this context.
If we let WN denote the matrix obtained by taking the complex conjugates of the

entries of WN , then it follows from Lemma 8.14 that WN WN = N · IN . That is,

(WN)−1 =
1
N

WN ,
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from which we see that the inverse discrete Fourier transform can be expressed in matrix
form as

F −1
D g =

1
N

WN g, (8.42)

where g is an N-periodic discrete function viewed as a column vector.

Example 8.24. This example illustrates the relation (8.24) in the matrix setting. With
N = 3, we get w3 = e−i2π/3. For two discrete 3-periodic functions f = 〈 f0, f1, f2〉 and
g = 〈g0,g1,g3〉, the convolution is

f ∗̄ g = 〈 f0g0 + f1g2 + f2g1, f0g1 + f1g0 + f2g2, f0g2 + f1g1 + f2g0〉.

Hence,

W3(f ∗̄ g) =

⎡
⎣1 1 1

1 w3 (w3)2

1 (w3)2 w3

⎤
⎦
⎡
⎣ f0g0 + f1g2 + f2g1

f0g1 + f1g0 + f2g2

f0g2 + f1g1 + f2g0

⎤
⎦

=

⎡
⎣ ( f0 + f1 + f2) · (g0 +g1 +g2)

( f0 +w3 f1 +(w3)2 f2) · (g0 +w3g1 +(w3)2g2)
( f0 +(w3)2 f1 +w3 f2) · (g0 +(w3)2g1 +w3g2)

⎤
⎦

= (W3 f) · (W3 g) ,

where the product in the last step is the entry-by-entry product of two vectors, each
viewed as a discrete 3-periodic function.

8.11 FFT—the fast Fourier transform

For an N-periodic discrete function f, the computation of the discrete Fourier transform
of f requires N2 multiplications, each of the form fk ·e−2πik j/N with 0≤ k, j ≤N−1. For
the large values of N encountered in medical imaging, this implies a significant amount
of computational time. With the introduction, in [12], of the fast Fourier transform,
Cooley and Tukey showed that the computation time can be reduced substantially—by
a factor of log(N)/N—if N is a power of 2.

For starters, suppose that N is an even number, say N = 2 ·M. Then the N th roots
of unity can be divided into two sets. Those of the form e−2πi(2k) j/N = e−2πik j/M, for
0 ≤ k ≤ (M − 1), are also M th roots of unity. The rest have the form e−2πi(2k+1) j/N =
e−2πi j/N · e−2πik j/M, for 0 ≤ k ≤ (M − 1). Thus, for each j between 0 and (N − 1), the
corresponding component of the discrete Fourier transform of f can be expressed as

(FD f) j =
M−1

∑
k=0

f2k · e−2πik j/M +
(

e−2πi/N
) j ·

M−1

∑
k=0

f2k+1 · e−2πik j/M. (8.43)
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Moreover, for 0 ≤ k ≤ (M−1) and M ≤ j ≤ (N −1), we get

e−2πik j/M = e−2πik( j−M)/M · e−2πikM/M = e−2πik( j−M)/M. (8.44)

In other words, for M ≤ j ≤ (N−1), we may replace j with ( j−M) in the sums on the

right-hand side of (8.43). Also,
(
e−2πi/N

) j
= −(

e−2πi/N
) j−M

. So now we can express
the discrete Fourier transform of f in an even simpler way. Namely, for 0≤ j ≤ (M−1),
we have

(FD f) j =
M−1

∑
k=0

f2k · e−2πik j/M +
(

e−2πi/N
) j

·
M−1

∑
k=0

f2k+1 · e−2πik j/M (8.45)

and

(FD f) j+M =
M−1

∑
k=0

f2k · e−2πik j/M −
(

e−2πi/N
) j ·

M−1

∑
k=0

f2k+1 · e−2πik j/M. (8.46)

The beauty of this is that, for N = 2M, we have now represented the discrete Fourier
transform of the N-periodic discrete function f in terms of the discrete Fourier trans-
forms of two M-periodic discrete functions f 0 = { f2k : 0≤ k ≤M−1} and f1 = { f2k+1 :
0 ≤ k ≤ M−1}. In symbols,

(FD f) j =
(
FD f 0)

j +
(

e−2πi/N
) j · (FD f1)

j (8.47)

and

(FD f) j+M =
(
FD f 0)

j −
(

e−2πi/N
) j

· (FD f1)
j , (8.48)

for 0 ≤ j ≤ (M−1). Assuming that
(
FD f 0) and

(
FD f1) have already been computed,

then only two multiplications are required to compute each component of (FD f), for
a total of 2N multiplications. (For each component, there is one multiplication by the
factor 1 and another by the factor ±e−2πi j/N .)

Now, if M = N/2 also happens to be an even number, then we can apply the same
reasoning to split each of the M-periodic discrete functions f 0 and f1 into two M/2-
periodic functions. The discrete Fourier transforms of f 0 and f1 can be computed from
those of the corresponding pair using 2M multiplications each, for a total of 2 ·2M = 2N
multiplications. We now see that, if N = 2p is a power of 2, then we can continue this
process of splitting discrete functions into pairs of discrete functions, halving the pe-
riod at each stage, until we are left with 2p separate 1-periodic discrete functions—the
individual components of the original function f. Each of these components is equal to
its own discrete Fourier transform (apply the definition (8.19)!), so we can start from
there, forming pairs, computing discrete Fourier transforms, and building back up to f.
Each stage in the process will require 2N multiplications, and there are p stages un-
til we reach the discrete Fourier transform of f. The total number of multiplications
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required is, therefore, 2N p = 2N log2(N), which, for large values of N, compares fa-
vorably to the N2 products required if (8.19) is used. For example, if N = 216 = 65536,
then 2N log2(N) is less than 0.05% of N2. Moreover, many of the multiplications in-
volved are actually just multiplication by the factor 1; so the savings in computation
time may be even greater than it initially appears. This method is called the fast Fourier
transform.

Some care must be taken in how the individual components of f are paired up if
we are eventually to arrive at the functions f 0 and f1 and then, finally, at f. In the first
stage, form separate lists of the components with even subscripts ( f0, f2, and so on)
and those with odd subscripts ( f1, f3, etc.). Then pair the components in the first half of
each list with those in the second half of the list. Thus, f0 is paired with fN/2, f2 with
fN/2+2, and so on up to the pair fN/2−2 and fN−2. Similarly, f1 is paired with fN/2+1,
f3 with fN/2+3, up to the pair fN/2−1 and fN−1. The discrete Fourier transform of each
pair is computed from the transforms of its two components. For the next stage, the
pairs in the even list are paired up according the same scheme: those in the first half
of the list are paired with those in the second half. In the same way, the pairs in the
first half of the odd list are matched up with the pairs in the second half of the odd list.
This pattern then replicates from stage to stage until, in the penultimate stage, all of
the components with even subscripts are combined in the same N/2-periodic discrete
function, and those with odd subscripts make up another discrete function. In the final
stage, the evens and odds are reunited at last.

Example 8.25. Fast Fourier transform for an 8-periodic discrete function. Let f be
an 8-periodic discrete function. To compute the discrete Fourier transform of f via the
fast Fourier transform algorithm, begin with the separate components of f and pair them
up as ( f0, f4), ( f2, f6), ( f1, f5), and ( f3, f7). The discrete Fourier transforms of these
pairs are, respectively,

{ f0 + f4, f0 − f4 }, { f2 + f6, f2 − f6 }, { f1 + f5, f1 − f5 }, and { f3 + f7, f3 − f7 }.

For the next stage, merge pairs of 2-periodic functions to form two 4-periodic func-
tions: {( f0, f4), ( f2, f6)} and {( f1, f5), ( f3, f7)}. By (8.47) and (8.48), the discrete
transforms of these pairs are, respectively,

{( f0 + f4)+( f2 + f6), ( f0 − f4)− i · ( f2 − f6),

( f0 + f4)− ( f2 + f6), ( f0 − f4)+ i · ( f2 − f6)}

and

{( f1 + f5)+( f3 + f7), ( f1 − f5)− i · ( f3 − f7),

( f1 + f5)− ( f3 + f7), ( f1 − f5)+ i · ( f3 − f7)}.
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Finally, combine the two 4-periodic functions into the single 8-periodic function
f = { [( f0, f4), ( f2, f6)], [( f1, f5), ( f3, f7)]}. Again following from (8.47) and (8.48),
the discrete transform is

FD f = { [( f0 + f4)+( f2 + f6)]+ [( f1 + f5)+( f3 + f7)],

[( f0 − f4)− i · ( f2 − f6)]+ e−πi/4 [( f1 − f5)− i · ( f3 − f7)],

[( f0 + f4)− ( f2 + f6)]− i[( f1 + f5)− ( f3 + f7)],

[( f0 − f4)+ i · ( f2 − f6)]+ e−3πi/4 [( f1 − f5)+ i · ( f3 − f7)],

[( f0 + f4)+( f2 + f6)]− [( f1 + f5)+( f3 + f7)],

[( f0 − f4)− i · ( f2 − f6)]− e−πi/4 [( f1 − f5)− i · ( f3 − f7)],

[( f0 + f4)− ( f2 + f6)]+ i[( f1 + f5)− ( f3 + f7)],

[( f0 − f4)+ i · ( f2 − f6)]− e−3πi/4 [( f1 − f5)+ i · ( f3 − f7)] }.

This agrees with (8.19), and if one counts every instance of a coefficient other than
1, the total number of multiplications involved is only about half of 82 = 64 (though,
admittedly, N = 8 is too small for there to be much of a savings here).

If this is applied to the 8-periodic discrete function with fk = cos(πk/2) for 0 ≤ k ≤
7, the resulting discrete Fourier transform is

FD f = {0, 0, 4, 0, 0, 0, 4, 0}.

Thus, the amplitude of the cosine wave is evenly divided between two opposite fre-
quencies. This corresponds to the continuous setting in which the continuous Fourier
transform of the cosine function consists of two impulses at opposite frequencies.

The fast Fourier transform has a matrix implementation as well. This amounts to
factoring the matrix WN in (8.41) in the case where N = 2p. As in (8.41), an N-periodic
discrete function f is viewed as a column vector,

f =

⎡
⎢⎢⎢⎢⎢⎣

f0

f1

f2
...

fN−1

⎤
⎥⎥⎥⎥⎥⎦

.

The initial step of rearranging the components of f for the first round of pairing is
implemented using a matrix obtained by rearranging the rows of the N ×N identity
matrix. Specifically, if ek denotes the kth row of the identity matrix, then let EN denote
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the matrix

EN :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e0

eN/2

e2

eN/2+2
...

eN/2−2

eN−2

e1

eN/2+1
...

eN/2−1

eN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then EN f achieves the desired reordering of the components of f.
As in (8.41), let wN = e−2πi/N and, for each integer k with 1 ≤ k ≤ p, let Rk be the

2k−1 ×2k−1 diagonal matrix with entries
(
(wN)2p−k

) j
in the jth diagonal position, for

0 ≤ j ≤ 2k−1 − 1. Let I denote the identity matrix (in this case, of dimensions 2k−1 ×
2k−1) and define a 2k ×2k matrix Bk by

Bk :=
[

I Rk

I −Rk

]
. (8.49)

Multiplication by Bk computes the discrete Fourier transform of a 2k-periodic discrete
function from the transforms of a pair of 2k−1-periodic functions. Thus, defining a
2p × 2p block-diagonal matrix Tk by arranging 2p−k copies of Bk along the diagonal,
it follows that multiplication by Tk computes the discrete transforms of 2p−k differ-
ent 2k-periodic discrete functions. This corresponds to the kth stage of the fast Fourier
transform algorithm. The end result of this algorithm is therefore described by the prod-
uct

FD f = Tp ·Tp−1 · · ·T1 ·EN f. (8.50)

For example, when N = 4, we get

E4 =

⎡
⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦ , T1 =

⎡
⎢⎢⎣

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

⎤
⎥⎥⎦ ,

and
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T2 =

⎡
⎢⎢⎣

1 0 1 0
0 1 0 −i
1 0 −1 0
0 1 0 i

⎤
⎥⎥⎦ .

With f = { f0, f1, f2, f3 }, we have

FD f = T2 ·T1 ·E4 f

=

⎡
⎢⎢⎣

1 0 1 0
0 1 0 −i
1 0 −1 0
0 1 0 i

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

f0

f1

f2

f3

⎤
⎥⎥⎦ .

Each of the matrices Tk has the property that there are only two nonzero entries in
each row and each column. Thus, the matrix product in (8.50) requires only 2N multi-
plications for each factor. There are p factors in all, not counting EN (which requires no
multiplications), for a total of 2N p = 2N log2(N) multiplications, as we found before.
Again, many of these multiplications involve the factor 1.

8.12 Fan beam geometry

In order to implement the discrete filtered back-projection formulas (8.2) and (8.38),
it is necessary to know the values of R f (t,θ) for a variety of choices of t for each of
the selected angles θ . Conceptually, we have envisioned a scanning machine that sends
out a set of parallel X-ray beams at each selected angle and records the corresponding
values of the Radon transform. Such a machine would have to have a strip of distinct
transmitters spaced at an appropriate sample spacing and able to rotate as a single unit
during the scanning process. Each setting would correspond to a particular value of
θ = kπ/N, and, once the readings had been taken, the corresponding summand in (8.38)
could be calculated. This corresponds to the parallel beam geometry that has been the
basis of our analysis all along.

In practice, however, it is easier to design a machine that has a single X-ray beam
transmitter that emits a fan of beams. An arc of detectors on the other side measures
the values of the Radon transform along the lines corresponding to the beams in the
fan. The trouble is that each transmission includes beams at a variety of values of θ .
Observe, though, that if two beams in the fan make an angle of φ with each other
when they are emitted, then, when the transmitter itself has been rotated by the same
angle φ and the two beams are emitted again, one of the new beams will be parallel to
one of the beams from the previous transmission. (See Figure 8.9 for an illustration of
this.) In other words, once the scanning process has been completed, it is possible to
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reorganize the fan beam data into an equivalent collection of parallel beam data. The
image reconstruction algorithm can then be applied to this reorganized data to produce
an image. This approach is called the fan beam geometry.

Fig. 8.9. Different fans yield parallel beams.

Rather than go into more detail here, we leave an examination of the fan beam ge-
ometry as a topic for further study. Other scanning geometries that have been developed
for use in later generation scanning machines include the spiral beam and cone beam
geometries, both of which facilitate the collection of data for more than one slice at
the same time. The overarching goal in the design of new geometries is to lessen the
radiation exposure of the patient by increasing the efficiency of the collection of the
X-ray data.

8.13 Exercises

8.1. Consider the low-pass cosine filter (7.27):

A(ω) = |ω | · cos(πω/(2L)) ·L(ω)

=
{ |ω |cos(πω/(2L)) if |ω | ≤ L,

0 if |ω | > L.

Following the format used for the Shepp–Logan and Ram–Lak filters in Section 8.3,

(a) compute the inverse Fourier transform F−1A, and

(b) show that

(F−1A)(πn/L) =
(

2L
π2

)
·
(

π · cos(πn)
(1−4n2)

− 2 · (1+4n2)
(1−4n2)2

)

for all integers n.
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(c) Use a graphing device to plot the filter A and the sampled points of its inverse
Fourier transform.

8.2. For discrete functions f , g, and h, and any constant α , prove that

(a) f ∗̄g = g ∗̄ f ,

(b) f ∗̄(g+h) = f ∗̄g+ f ∗̄h, and

(c) f ∗̄(αg) = α( f ∗̄g).

(Assume that all of the sums converge.)

8.3. Prove Proposition 8.16: For two discrete N-periodic functions f and g,

FD( f ·g) =
1
N

(FD f ) ∗̄(FDg) . (8.51)

Note that this is analogous to (7.14).

8.4. For a discrete function f , define the conjugate function f by setting f k = fk for
every k. In analogy to (5.10), prove Proposition 8.17:

(
FD f

)
j = (FD f )− j (8.52)

for all j. (Note that (FD f )− j = (FD f )N− j by periodicity.)

8.5. Prove Proposition 8.18, the discrete Rayleigh–Plancherel theorem: For an N-peri-
odic discrete function f ,

N−1

∑
n=0

| fn|2 =
1
N

N−1

∑
n=0

|(FD f )n|2. (8.53)

8.6. Prove the identity (8.20):

1/2+ cos(θ)+ cos(2θ)+ · · ·+ cos(Mθ) =
sin((M +1/2)θ)

2 · sin(θ/2)
,

for all natural numbers M and all real θ .

8.7. On the interval 0 ≤ x ≤ 1, write down a formula for the piecewise linear function
F determined by the values F(0) = 0.5, F(1/3) = 0.3, F(2/3) = 0.6, and F(1) = 0.5.
(The formula should consist of three line segments.) Then use this formula to compute
the values F(0.2) and F(0.7).

8.8. Recall the formula (8.31) for Lagrange interpolation of a function f using N + 1
data points (x1, f (x1)), . . . , (xN+1, f (xN+1)):
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f (x) =
N+1

∑
j=1

f (x j) · ∏k �= j (x− xk)
∏k �= j (x j − xk)

.

Verify that, if x = xn for some n between 1 and N + 1, then the formula yields
f (x) = f (xn). (Thus, the formula agrees with the data.)
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Algebraic Reconstruction Techniques

9.1 Introduction

To this point, we have studied how Fourier transform methods are used in image recon-
struction. This is the approach taken in the seminal work of Cormack [13] and used in
the algorithms of today’s CT scan machines. However, the first CT scanner, designed in
the late 1960s by Godfrey Hounsfield, used an approach grounded in linear algebra and
matrix theory to generate an image from the machine readings. Algorithms that adopt
this point of view are known as algebraic reconstruction techniques, or ART, for short.
In this chapter, we look at a few basic mathematical elements of ART.

Where the Fourier transform methods begin with a continuous theory—the filtered
back-projection formula of Theorem 6.2—which is then modeled using discrete meth-
ods, ART treats the problem of image reconstruction as a discrete problem from the
start. Any image that we produce will be constructed inside a rectangular grid of pic-
ture elements, or pixels. The number of pixels in a given image may be large, but it is
nonetheless finite, typically on the order of 105. For example, there are 65536 pixels in
a 256-by-256 grid. To form an image, a specific color value is assigned to each pixel.
For instance, the color value assigned to a given pixel might be a greyscale value, a
number between 0 (= black) and 1 (= white), that represents the density or attenuation
coefficient of the matter in the sample at the location of the given pixel. ART techniques
use a system of constraints derived from the machine readings to compute these color
values.

So, suppose an image is to be constructed in a K-by-K grid of pixels. Each pixel is
really a small square in the plane. For convenience, number the pixels like so: 1 through
K from left to right across the top row; K +1 through 2K across the second row; and so
on until, in the bottom row, we find pixels numbered (K − 1)K + 1 through K2. Next,
define the pixel basis functions b1, . . . ,bK2 by

T.G. Feeman, The Mathematics of Medical Imaging, Springer Undergraduate Texts 101
in Mathematics and Technology, DOI 10.1007/978-0-387-92712-1 9,
c© Springer Science+Business Media, LLC 2010
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bk(x,y) =
{

1 if (x,y) lies inside pixel number k,
0 if (x,y) does not lie inside pixel number k

(9.1)

for k = 1,2, . . . ,K2 and points (x,y) in the plane. If we assign the color value xk to the
kth pixel, then the resulting image will be represented by the function

f̃ (x,y) =
K2

∑
k=1

xk ·bk(x,y) (9.2)

for each point (x,y) lying inside the overall region covered by the grid. Applying the
Radon transform R to both sides of this equation, and using the linearity of R , we get,
for each choice of t and θ ,

R f̃ (t,θ) =
K2

∑
k=1

xk ·Rbk(t,θ). (9.3)

In practice, the X-ray machine gives us the values of R f̃ (t,θ) for some finite set of
lines �t,θ . For convenience, let’s say these known values correspond to (t1,θ1), (t2,θ2),
. . ., (tJ,θJ) for some positive integer J. Then,

let p j = R f̃ (t j,θ j), for j = 1,2, . . . ,J.

The system of equations (9.3) can now be written as

p j =
K2

∑
k=1

xk ·Rbk(t j,θ j) for j = 1, . . . ,J. (9.4)

Our next observation is that, since the pixel basis function bk has the value 1 on its
pixel and 0 elsewhere, the value of the integral Rbk(t j,θ j) is equal to the length of the
intersection of the line �t j,θ j with pixel number k. In principle, these values are easy to
compute. (Caveat: If we allow finite-width X-ray beams, rather than zero-width, then
this computation becomes more complicated.) So, let’s denote by r jk the length of the
intersection of the line �t j,θ j with pixel number k; that is,

let r jk = Rbk(t j,θ j) for j = 1, . . . ,J and k = 1, . . . ,K2. (9.5)

With this notation, the system (9.3) can be written as

p j =
K2

∑
k=1

xk · r jk for j = 1, . . . ,J. (9.6)
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This is a system of J linear equations in K2 unknowns (x1, . . ., xK2 ). Typically, both J
and K2 are on the order of 105, so the system is large. However, any particular line �t j,θ j

passes through relatively few of the pixels in the grid, on the order of K out of K2 total
pixels. Thus, most of the values r jk are equal to 0, meaning that the system (9.6) is large
but sparse. With typical values of J and K, only about one percent of the entries in the
coefficient matrix of the system are nonzero.

Some computational concerns arise from this approach to the image reconstruction
problem. For one thing, the system of equations we have to solve is large—typically
on the order of 105 equations. Each sampling of the Radon transform produces an
equation in the system while each pixel corresponds to an unknown, the color value
for that pixel. If the system of equations is overdetermined, with more equations than
unknowns, then the system likely does not have an exact solution. If the system is
underdetermined, with more unknowns than equations, then there may be infinitely
many solutions, only one of which could possibly be the correct solution. A typical scan
might include 200 X-ray measurements at each of 180 different directions, for a total
of 36000 equations in the system. A grid of 160× 160 pixels gives 25600 unknowns
and an overdetermined system. To get an image with higher resolution, though, we may
want to use a grid of 256×256 pixels, or 65536 unknowns. This results in a system that
is heavily underdetermined, so the iterative algorithms discussed below are ineffective.
For this reason, among others, iterative algorithms are no longer used in commercial CT
machines. In any case, due to errors in measurement in sampling the Radon transform,
the equations are only estimates to begin with. So, again, the system is not likely to
have an exact solution. The fact that the coefficient matrix is sparse, with only a small
proportion of nonzero entries, also has a direct effect on the computational complexity.

We now look at two different methods for arriving at an approximate solution to a
system of linear equations. These methods are least squares approximation and Kacz-
marz’s method.

9.2 Least squares approximation

For a given M ×N matrix A and a given vector p in RM , the system Ax = p may not
have a solution. One approach to finding an approximate solution is to find the vector
ŷ of the form ŷ = Ax̂ such that ŷ is closest to p amongst all vectors of this form. Thus,
the goal of least squares approximation is to find a vector x̂ in RN such that

‖Ax̂− p‖ = min
x∈RN

‖Ax− p‖. (9.7)

In other words, we wish to find the vector Ax̂ in the range of the matrix A that is closest
to p amongst all elements of the range of A. Because the magnitude of a vector can
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be expressed as a sum of squares, this form of approximation is called least squares
approximation.

Now for the technicalities.

Definition 9.1. For a given M ×N matrix A, the range of A is the set
{

Ax|x ∈ RN
}

.
Notice that this is a subset of RM .

Theorem 9.2. For a given M×N matrix A, the range of A is a subspace of RM.

Proof. If x1 and x2 are any elements of RN and λ is any constant (scalar), then

λAx1 +Ax2 = A(λx1 +x2)

by the properties of matrix arithmetic. Thus, the range of A is closed under the opera-
tions of vector addition and scalar multiplication. �

Definition 9.3. For a given M ×N matrix A, the transpose of A, denoted by AT, is the
N ×M matrix whose entry in row k and column j is the same as the entry of A in row j
and column k. In other words, column j of AT is the same as row j of A, and row k of
AT is the same as column k of A. Notice that, in general,

(
AT

)T = A.

Example 9.4. If A =

⎡
⎣ 4 0
−3 2
1 5

⎤
⎦, then AT =

[
4 −3 1
0 2 5

]
.

The interaction between A, AT, and the dot product, stated in the next theorem, is of
fundamental importance in many applications of linear algebra.

Theorem 9.5. Let A be an M×N matrix, let x be a vector in RN, and let y be a vector
in RM. Then

Ax············y = x············AT y. (9.8)

Notice that the dot product on the left-hand side involves two vectors in RM while
the dot product on the right-hand side involves two vectors in RN .

Proof. Let us consider an example to illustrate. Take A =

⎡
⎣ 4 0
−3 2
1 5

⎤
⎦, x =

[
x1

x2

]
in

R2, and y =

⎡
⎣ y1

y2

y3

⎤
⎦ in R3. Then we compute:
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Ax············y =

⎡
⎣ 4 0
−3 2
1 5

⎤
⎦
[

x1

x2

]
············
⎡
⎣ y1

y2

y3

⎤
⎦

=

⎡
⎣ 4x1

−3x1 +2x2

x1 +5x2

⎤
⎦ ············

⎡
⎣ y1

y2

y3

⎤
⎦

= 4x1y1 +(−3x1 +2x2)y2 +(x1 +5x2)y3

= x1(4y1 −3y2 + y3)+ x2(2y2 +5y3)

=
[

x1

x2

]
············
[

4y1 −3y2 + y3

2y2 +5y3

]

=
[

x1

x2

]
············
[

4 −3 1
0 2 5

]⎡
⎣ y1

y2

y3

⎤
⎦

= x············AT y as desired.

The general proof follows this same pattern and is left as an exercise. �

Corollary 9.6. If y is orthogonal to the range of A, then y is in the nullspace of AT .

Proof. If y is orthogonal to the range of A, then Ax············y = 0 for every vector x in RN .
Hence, it follows from Theorem 9.5 that x············AT y = 0 for every x in RN . In other words,
the vector AT y is orthogonal to every vector in RN . In particular, the vector AT y is
orthogonal to itself, so that AT y············AT y = 0. That is, ‖AT y‖2 = 0, from which it follows
that AT y = 0. In other words, y is in the nullspace of AT as claimed. �

Now we return to the least squares approximation problem itself. Recall that our
goal is to find the vector Ax̂ in the range of the matrix A that is closest to p of all
such vectors. Geometrically, if we take an arbitrary element Ax in the range of A and
consider the projection of the vector (Ax− p) onto the range of A, then the foot of this
projection will be a vector in the range of A that is at least as close to p as the original
vector Ax was. Thus, the closest element to p in the range of A is the element Ax̂ for
which the foot of the projection of (Ax̂− p) onto the range of A is the vector Ax̂ itself.
This means that the vector (Ax̂− p) must be orthogonal to the range of A. By Corollary
9.6 above, this means that the vector (Ax̂− p) must lie in the nullspace of the matrix
AT . In other words, the vector x̂ must satisfy the equation

AT (Ax̂− p) = 0, (9.9)

or what is the same thing,
AT Ax̂ = AT p. (9.10)

This last equation is called the normal equation.
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Definition 9.7. A least squares solution to the equation Ax = p is a vector x̂ that satis-
fies the normal equation (9.10). In this case, the vector Ax̂ is the closest element in the
range of A to the vector p.

Notice that, in the case where the matrix AT A is invertible, then the normal equation
(9.10) yields the least squares solution

x̂ =
(
AT A

)−1
AT p. (9.11)

In general, however, AT A need not be invertible, in which case the least squares solution
x̂ is not unique. Nonetheless, the range element ŷ = Ax̂ that is closest to p is unique.

Example 9.8. Take A =

⎡
⎣ −1 2

2 −3
−1 3

⎤
⎦ and p =

⎡
⎣ 4

1
2

⎤
⎦. Show that AT A is invertible and

that the (unique) least squares solution, computed from (9.11), is x̂ =
[

3
2

]
. Compute

‖Ax̂− p‖ in this case.

Example 9.9. Take A =

⎡
⎢⎢⎣

1 1 0
1 1 0
1 0 1
1 0 1

⎤
⎥⎥⎦ and p =

⎡
⎢⎢⎣

1
3
8
2

⎤
⎥⎥⎦. Show that AT A is not invertible.

Find all solutions to the normal equation (9.10) and show that the (unique) element

closest to p in the range of A is ŷ =

⎡
⎢⎢⎣

2
2
5
5

⎤
⎥⎥⎦. Compute ‖ŷ− p‖ in this case.

Here is an alternate approach to solving the least squares approximation problem
that leads us again to the normal equation (9.10). For a given M ×N matrix A and a
given vector p in RM , define a real-number-valued function F : RN → R by

F(x) := ‖Ax− p‖2 = (Ax− p) ············ (Ax− p) , for all x in RN .

One can show that the gradient vector of F satisfies

∇F(x) = 2
(
AT Ax−AT p

)
, for all x in RN . (9.12)

The least squares solution x̂ produces a minimum value for F and, hence, the gradi-
ent of F at x̂ must vanish. That is, ∇F(x̂) = 0 for the least squares solution x̂. According
to (9.12), then, the least squares solution x̂ satisfies the normal equation AT Ax̂ = AT p.

One computational concern associated with the least squares method in the context
of imaging is that the matrix AT A in the normal equation (9.10) is huge, on the order
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of K2-by-K2. Also, the matrix AT A might not be sparse even though A is. Another
concern is that the matrix AT A might not be invertible or that its inverse might be
difficult to compute. Moreover, round-off errors can be fatal. For instance, a matrix
entry that ought to be 0 but shows up as a tiny nonzero number can wreck the process
of inverting a matrix. Similarly, an entry that ought to be a tiny nonzero number but
shows up as 0 can also have a deleterious effect.

9.3 Kaczmarz’s method

Kaczmarz’s method is an iterative procedure, or algorithm, for approximating a solution
to a linear system Ax = p. If we denote by ri the ith row of the matrix A and by pi the
ith coordinate of the vector p, then the system Ax = p is the same as having ri ············x = pi

for every value of i. Kaczmarz’s method works by producing a sequence of vectors each
of which satisfies one of the individual equations ri ············x = pi. The first research article
to explore the application of algebraic reconstruction techniques to medical imaging
was [19], which appeared in 1970. The principal technique employed therein for the
reconstruction of images turned out to be the same as Kaczmarz’s method.

9.3.1 Affine spaces

Before looking at Kaczmarz’s method itself, we make the following definition.

Definition 9.10. For a fixed n-dimensional vector r and a number p, the affine space
Sr,p is defined by

Sr,p = {x ∈ Rn : r············x = p} .

Note that the affine space Sr,p is a subspace of Rn if, and only if, p = 0.
We have already seen an important example of affine spaces in the lines �t,θ . Each

point on �t,θ is the terminal point of a vector x = 〈t cos(θ)−ssin(θ), t sin(θ)+scos(θ)〉
for some value of the parameter s. Letting r = 〈cos(θ), sin(θ)〉, we compute

r············x = t cos2(θ)− ssin(θ)cos(θ)+ t sin2(θ)+ scos(θ)sin(θ)
= t(cos2(θ)+ sin2(θ))
= t

regardless of the value of s. Thus, each line �t,θ is an affine space. If t = 0, then �0,θ is
a line through the origin and, so, is a subspace of R2.

Every affine space can be viewed as a copy of a subspace that has been shifted by a
fixed vector. For example, for each fixed value of θ , the line
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�0,θ = {〈−ssin(θ), scos(θ)〉 : −∞ < s < ∞}

forms a subspace of R2. For each real number t , we then have that

�t,θ = 〈t cos(θ), t sin(θ)〉+ �0,θ .

To formulate the same notion slightly differently, let r = 〈cos(θ), sin(θ)〉 and x0 =
〈t cos(θ), t sin(θ)〉. Then r············x0 = t . The subspace �0,θ consists of the set of all vectors
x for which r············x = 0. Thus, the line �t,θ consists of the terminal points of all vectors of
the form x0 +x, where r············x = 0.

Similarly, for any vector r and any real number p, consider the affine space Sr,p

and the subspace Sr,0. Observe that, for x0 and x1 in Sr,p, the vector xh = x1 − x0

satisfies the homogeneous equation r············xh = 0. That is, xh is in the subspace Sr,0. Since
x1 = xh + x0, it follows that every element of the affine space Sr,p can be obtained
by adding the vector x0 to some element of the subspace Sr,0. This is reminiscent
of the use of a “particular solution” together with the general homogeneous solution
to obtain the general solution to a nonhomogeneous linear differential equation or a
nonhomogeneous system of linear equations.

A final crucial observation is that, since the vector r is orthogonal to the subspace
Sr,0, and, since the affine space Sr,p is a parallel translation of this subspace, then it
follows that the vector r itself is orthogonal to the affine space Sr,p.

Definition 9.11. Affine projection. Given a vector u and an affine space Sr,p for some
vector r and some number p, the affine projection of u in Sr,p is the vector u∗ in Sr,p

that is closest to u amongst all vectors in Sr,p.

Now, in order to move from u to the closest point in the affine space, it is evident
that we should move orthogonally to the affine space. According to our previous obser-
vations, this means that we should move in the direction of the vector r itself. Thus, the
vector u∗ that we seek should have the form u∗ = u−λr for some number λ .

Substituting u∗ = u−λr into the equation r············u∗ = p and solving for λ yields

λ =
(r············u)− p

r············r .

Thus, we have proven the following proposition.

Proposition 9.12. The affine projection u∗ of the vector u in the affine space Sr,p is
given by

u∗ = u−
(

(r············u)− p
r············r

)
r. (9.13)
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9.3.2 Kaczmarz’s method

Now we put our knowledge of affine spaces to work. Recall that our goal is to find an
approximate solution to a linear system Ax = p. Again denote the ith row of A by ri and
the ith coordinate of p by pi. Then each of the equations ri ············x = pi describes an affine
space. Kaczmarz’s method proceeds by starting with an initial guess at a solution, a
vector of prospective color values, and then computing the affine projection of this
initial guess onto the first affine space in our list. This projection is then projected onto
the next affine space in the list, and so on until we have gone through the entire list of
affine spaces. This constitutes one “iteration” and the result of this iteration becomes
the starting point for the next iteration.

In detail, the method proceeds as follows.

(i) Select a starting “guess” for x; call it x0.
(ii) Next set x0,0 = x0.
(iii) The inductive step is this: Once the vector x0,i−1 has been determined, define

x0,i = x0,i−1 −
(

x0,i−1 ············ri − pi

ri ············ri

)
ri. (9.14)

We have used the affine projection formula (9.13) from Proposition 9.12.
(iv) Note that if the matrix A has J rows, then the vectors x0,1, x0,2, . . ., x0,J will be

computed.
(v) Once x0,J has been computed, define x1 = x0,J and begin the process again starting

with x1. That is, now set x1,0 = x1 and compute the vectors x1,1, x1,2, . . ., x1,J , as
in (9.14).

(vi) Then let x2 = x1,J and repeat the process starting with x2,0 = x2.
(vii) Stop when we’ve had enough!

There are, as we might expect, some computational concerns with this method. In
principle, the successive vectors x0, x1, x2, . . . should get closer to a vector that satisfies
the original system Ax = p. However, the convergence may be quite slow, meaning that
many steps of the iteration would have to be applied to get a good approximant. Also, if
the system has no solution, then the vectors computed from the algorithm might settle
into a specific pattern, called an “attractor” in dynamical systems theory, or might even
exhibit “chaotic” behavior.

Example 9.13. Apply Kaczmarz’s method to the system consisting of just the two lines
x + 2y = 5 and x− y = 1. So r1 = 〈1,2〉, r2 = 〈1,−1〉, p1 = 5, and p2 = 1. With the
initial guess x0 = 〈0.5,0.5〉, the diagram on the left in Figure 9.1 shows that the solution
〈7/3,4/3〉 is quickly found.
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Fig. 9.1. On the left, Kaczmarz’s method converges quickly to the point of intersection of two lines.
On the right, the successive iterations settle into a triangle pattern for a system of three lines.

However, when we include the third line 4x+y = 6 (so r3 = 〈4,1〉 and p3 = 6), then
the successive iterations settle into a triangle pattern, shown in the diagram on the right
in the figure.

Before looking at an image created using Kaczmarz’s method, we state, without
proof, the main convergence theorem for this algorithm. (For a proof see [14] or [30].)

Theorem 9.14. If the linear system Ax = p has at least one solution, then Kaczmarz’s
method converges to a solution of this system. Moreover, if x0 is in the range of AT, then
Kaczmarz’s method converges to the solution of minimum norm.

9.4 ART in medical imaging

The convergence result in Theorem 9.14 generally is not relevant in medical imaging,
where the linear systems encountered tend to be indeterminate and where, in any case,
it is computationally feasible to run only a few iterations of Kazcmarz’s method.

The image in Figure 9.2 is a reconstruction of the crescent-shaped phantom illus-
trated in Figure 2.2 and defined by the attenuation function in (2.8). The image here
is divided into a 25× 25 grid of “pixels,” so there are 625 pixel basis functions. The
Radon transform of the phantom was sampled with a sample spacing of 0.05 on the
interval −0.6 ≤ t ≤ 0.6 and with angle increments of π/18, for a total of 432 different
values. The resulting system, as in (9.6), has 432 equations in 625 unknowns. Five full
iterations of Kaczmarz’s method were applied with an initial vector x0 having every
coordinate equal to 0.5. (In other words, the starting point was taken to be a neutral
grey image.) This image shows the crescent, but it does not compare particularly favor-
ably to the images in Figures 8.7 and 8.8, even though the computer processing time
required was greater.
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Fig. 9.2. Kaczmarz’s method applied to a crescent-shaped phantom, using a 25×25 image grid and
432 values of the Radon transform.

The image in Figure 9.2 raises some concerns about the use of Kaczmarz’s method
in medical imaging. As we have mentioned before, the sheer size of the system of
equations involved can be an impediment. In the context of tomography, each of the
values ri j represents the length of the intersection of one of the X-ray beams with one
of the pixel squares in the image grid. Thus, as observed before, most of these values are
zeros. The formula for computing xk,i from xk,i−1 only alters xk,i−1 in those components
that correspond to the pixels through which the ith beam passes. To streamline the
computation of xk,i−1 ············ri, we could store the locations of the nonzero entries of ri.

Another concern is that of the rate of convergence. Adjacent X-ray beams, transmit-
ted along the lines �t,θ for nearby values of t and θ , will intersect many of the same
pixels. Thus, the corresponding affine spaces {x············r = p} will be almost parallel. This
might tend to slow down the convergence of the algorithm and increase the number of
iterations required to get an acceptable image. One way to address this is to use more
and smaller pixels, though this adds to the processing time.

9.5 Variations of Kaczmarz’s method

Perhaps the most commonly employed variation of Kaczmarz’s method involves the
introduction of so-called relaxation parameters in the crucial step (9.14) of the algo-
rithm. Specifically, for each i and k, let λik satisfy 0 < λik < 2 and replace the formula
in (9.14) with the formula

xk,i = xk,i−1 −λik ·
(

xk,i−1 ············ri − pi

ri ············ri

)
ri. (9.15)
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For λik = 1 this is the same as before. For 0 < λik < 1, the vector xk,i−1 is projected
only part of the way to the affine space Sri,pi . When 1 < λik < 2, the vector xk,i−1 is
projected to the other side of Sri,pi . Note that, if λik = 2, then the vector xk,i is just
the reflection of xk,i−1 across Sri,pi and there is no improvement in the proximity to a
solution. This is the reason for the restriction λik < 2. In fact, the usual requirement is
that the value of λik be bounded away from 0 and 2; that is, there should be numbers α
and β such that 0 < α ≤ λik ≤ β < 2 for all i and k.

The additional control over the projection offered by the relaxation parameters can
be used to facilitate finding an acceptable approximate solution to an indeterminate
system. Alternatively, we can use this additional control to modify the original system
of linear equations by replacing it with a system of inequalities instead. To do this, we
select, for each i, a (small) positive number εi and consider the inequalities

pi − εi ≤ ri ············x ≤ pi + εi.

A solution to this system of inequalities is a vector x∗ that, instead of lying in the in-
tersection of some collection of affine spaces, lies in close proximity to those spaces.
Geometrically, if we think of an affine space as a higher-dimensional plane sitting in-
side a many-dimensional space, then vectors in proximity to an affine space form a
higher-dimensional “slab,” with thickness 2 ·εi. The solution vector x∗ would lie inside
these slabs. The use of relaxation parameters in the variation of Kaczmarz’s method en-
ables us to control the projection of each successive vector in the iteration into the next
slab. When inequalities are used instead of equations, the problem is called a feasibility
problem rather than an optimization problem.

The article [11] provides a nice introduction to these ideas, while [10] and [19] offer
more details of these methods. A much more general approach to feasibility problems
that includes Kaczmarz’s method and its variants can be found in the comprehensive
article [3].

9.6 ART or the Fourier transform?

As mentioned at the start of this chapter, the first CT scanner, invented at EMI by
Hounsfield, essentially used an ART approach for its images. However, Fourier trans-
form methods, such as the filtered back-projection formula, are generally faster to im-
plement on a computer. Consequently, today’s commercial scanners are programmed
to use transform methods. The iterative algorithms of ART simply converge too slowly,
while the filtered back projection, which is based on a continuous model, can be adapted
fairly easily to any desired level of accuracy.

It is nonetheless worth studying ART, and not only for its intrinsic mathematical
interest. For instance, in some nonmedical applications of CT, such as nondestructive
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material testing, abrupt changes in the density of the material being scanned require im-
age reconstruction methods that can provide high contrast. ART turns out to be useful in
this regard. Also, ART can have a role to play in single-photon emission computerized
tomography (SPECT) and positron emission tomography (PET), where difficulty in the
measurement of the attenuation can sometimes render transform methods less reliable
than usual. Finally, we mention the problem of incomplete data collection, which can
occur, for instance, if the range of angles used in a CT scan is restricted in order to limit
the patient’s exposure to X-rays. Transform methods that rely on convolution require
the completion of the data, whereas the iterative ART methods simply get applied to a
smaller set of equations.

9.7 Exercises

9.1. In each case, find all least squares solutions to the system Ax = b.

(a) A =

⎡
⎣ 4 0

0 2
1 1

⎤
⎦; b =

⎡
⎣ 2

0
11

⎤
⎦.

(b) A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

; b =

⎡
⎢⎢⎢⎢⎢⎢⎣

−3
−1
0
2
5
1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Warning: AT A is not invertible!

9.2. For the system of two lines x1 − x2 = 0 and x1 + x2 = 5 and the starting point

x0 =
[

3
1

]
, apply Kaczmarz’s method to compute x0,1 and x0,2. Show that the vector

x0,2 lies on both lines.

9.3. For the system of three lines x1 − x2 = 1, x2 = 1, and x1 = 0 and the starting point

x0 =
[

0
0

]
, apply Kaczmarz’s method to compute x1 and x2. (That is, apply two full

cycles of the iteration.) What happens? What happens if we start instead at x0 =
[

a1

a2

]
?

9.4. Prove Theorem 9.5: Let A be an M×N matrix, let x be a vector in RN , and let y be
a vector in RM. Then

Ax············y = x············AT y.
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9.5. Let A be an M ×N matrix. Prove that, if y is in the nullspace of AT, then y is
orthogonal to the range of A. In conjunction with the Corollary 9.6, this shows that the
orthogonal complement of the range of A coincides with the nullspace of AT.

9.6. For a given M×N matrix A and a given vector p in RM , let the function F : RN →R
be defined by

F(x) := ‖Ax− p‖2 = (Ax− p) ············ (Ax− p) , for all x in RN .

Show that the gradient vector of F satisfies

∇F(x) = 2
(
AT Ax−AT p

)
, for all x in RN ,

as claimed in (9.12).

9.7. Let A =
[

1 2
1 2

]
and p =

[
1
2

]
. Define F by

F(x,y) =
∥∥∥∥A

[
x
y

]
− p

∥∥∥∥
2

.

By solving the equation ∇F(x,y) =
[

0
0

]
, show that the vector q in the range of A that

is closest to p is q =
[

1.5
1.5

]
.
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MRI—An Overview

10.1 Introduction

Magnetic resonance imaging, or MRI, is an imaging technique that has grown alongside
CT and that, like CT, has produced Nobel laureates of its own. Where the physics of CT
is fairly straightforward—X-rays are emitted and their changes in intensity measured—
MRI is based on the generation of a complex of overlapping, fluctuating electromag-
netic fields that must be precisely controlled. Mathematically, the effects of the elec-
tromagnetic fields on the atomic nuclei in the sample being studied are modeled with
differential equations. The Fourier transform is the primary tool for analyzing the elec-
trical signals generated by the motions of atomic nuclei under the influence of these
fields.

Clinically, MRI is safer than CT for most patients since it involves no radiation.
The magnetic fields involved operate at frequencies in the radio band range. (In fact,
to the patient undergoing an MRI exam, it sounds like listening to a very loud, very
weird radio station.) In order to emphasize the safety and to discourage confusion, the
original appellation of nuclear magnetic resonance imaging (nMRI) was shortened.
On the downside, an MRI machine is expensive to purchase, operate, and maintain.
Also, the intensity of the magnetic fields can rule out the procedure for some patients,
including those with certain metallic implants.

Magnetic resonance imaging is a wide-ranging and continually developing field of
study and practice, and is the subject of an extensive body of literature. Consequently,
in this chapter we present only a brief overview of some of the basic principles involved
in MRI, emphasizing aspects of the underlying mathematics. For a reader wishing to
undertake a more intensive investigation of MRI, some possible starting points are the
article [21] and the books [17], [5], [16], and [25].

Two basic descriptions of the phenomenon known as nuclear magnetic resonance
(NMR) were published in 1946, one by a team of researchers led by Felix Bloch

T.G. Feeman, The Mathematics of Medical Imaging, Springer Undergraduate Texts 115
in Mathematics and Technology, DOI 10.1007/978-0-387-92712-1 10,
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(1905–1983) and the other by a team headed by Edward Purcell (1912–1997). Bloch’s
point of view is based on principles from classical physics and adopts an aggregate ap-
proach, looking at the net magnetization of the nuclei in a sample. Purcell’s description,
grounded in quantum physics, examines the magnetic effects at the level of an individ-
ual nucleus. It is perhaps ironic that Bloch was trained as a quantum physicist (his
doctoral advisor was Werner Heisenberg), while Purcell was a classical physicist (his
doctoral advisor was John van Vleck). In 1952, Bloch and Purcell were joint recipients
of the Nobel Prize for Physics.

For several decades after Bloch and Purcell established the physical basis for study-
ing NMR, the primary application was to chemical spectroscopy, and it was only around
1970 that the possibility of using NMR for imaging was realized. Paul Lauterbur (1929–
2007) is credited with introducing the idea of using gradient magnetic fields to achieve
spatial resolution of the radio signal emitted by a magnetized sample. Applying his
technology to a setup consisting of test tubes of heavy water sitting inside a beaker of
regular water, he produced the first images that could distinguish between two different
kinds of water. Peter Mansfield (1933– ) advanced Lauterbur’s work by developing
techniques for mathematically analyzing the radio signals, including a technique known
as echo-planar imaging that speeds up the imaging process. Lauterbur and Mansfield
were jointly awarded the 2003 Nobel Prize for Medicine and Physiology.

10.2 Basics

The nucleus of a hydrogen atom, a chemical element found in abundance in the human
body, possesses a property known as spin. Conceptually, one can think of the single
proton that comprises this nucleus as a tiny spinning top, rotating about an axis. This
property brings with it a magnetic effect, whereby the spinning proton behaves like
a bar magnet with north and south poles. As the little magnet spins, it generates an
electrical signal. In the absence of other factors, there is no preferred choice for the
axis around which the proton spins nor for the orientation of this axis within three-
dimensional space. Within a sample of hydrogen-rich tissue, then, the distribution of
spins will be random and the resulting signals will cancel each other out.

If, however, the sample is immersed in a strong external magnetic field having a
fixed direction, then the spin axes of the hydrogen protons will tend to align either in
the same direction as the external field or in the opposite direction. There will be some
of each, but measurably more in the same direction as the field, as this state involves a
lower energy level. To be more precise, the axes of the spinning hydrogen protons will
not align exactly with the external field but will precess, or wobble, about it, much as
a spinning top whose axis is not vertical precesses about the vertical as it spins. Due to
the precession, the magnetic moment of any one particular nucleus will have a vector
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component that is perpendicular to the direction of the external field. However, because
there is no preferred phase for the precession, the phases of the various nuclei in the
sample will be randomly distributed and, as a result, the sum of these components will
cancel out. Over the whole sample, then, the effect is of an aggregate nuclear magnetic
moment that is aligned in the same direction as the external magnetic field.

In this equilibrium state, with all of the nuclei behaving in basically the same way,
exhibiting a sort of “herd mentality,” no useful electrical signal will be generated. To
create a signal, a second magnetic field is introduced, one that oscillates in a plane
perpendicular to the static external field. This new field causes the alignment of the
nuclei to flip out of the equilibrium state. As the nuclei begin to precess about a new
axis, the specifics of which depend on the strength and duration of the new field, the
aggregate nuclear magnetic moment develops a nonzero net component transverse to
the static magnetic field. After a certain amount of time, this second field is cut off and
the nuclei relax back to their previous state.

There are two aspects to this relaxation.
As the net transverse component of the magnetic moment precesses, it induces an

electromotive force (emf) in a coil that surrounds the sample. At the same time, with
only the static field in effect, the nuclei gradually become de-phased in the transverse
direction as they move toward equilibrium. Essentially, the net transverse magnetization
describes a decaying wave, the rate of decay of which can be measured by analyzing
the resulting induced emf. This process is known as spin–spin, or T2, relaxation.

While the transverse component of the nuclear magnetic moment decays to zero,
the component in the direction of the static magnetic field returns, asymptotically, to its
equilibrium level. This process is called spin–lattice, or T1, relaxation. As we shall see,
the rate at which this process evolves can be measured through careful manipulation of
the second magnetic field and the analysis of an electrical signal induced by the motion
of the aggregate nuclear magnetic moment.

Different tissue types, or, more precisely, magnetized nuclei contained inside differ-
ent chemical environments, have different T1 and T2 relaxation rates, the measurements
of which reveal the types of material present within the sample. To resolve this informa-
tion spatially, so that an image can be created showing the location within the sample
of each type of tissue, additional magnetic fields, known as gradients, are introduced to
the experiment. This is discussed in what follows.

At the molecular and atomic level, quantum effects certainly exist, but the classical
approach outlined here is more feasible when it comes to designing practical machines
to implement the system. So, with this conceptual framework in mind, we turn our
attention to the mathematical model introduced by Bloch in 1946.
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10.3 The Bloch equation

In an MRI machine, a strong, uniform, and steady magnetic field, B0, is generated by
running an electrical current through a large coil. In clinical applications, the direction
of the field B0 is aligned along the length of the patient’s body, which direction is taken
as the z-axis of a Cartesian coordinate system and is also referred to as the longitudinal
direction. The magnitude or strength of B0, denoted by B0 (without the boldface type),
is usually about 0.5 tesla in practice.

Denote the aggregate magnetic moment of the nuclei in a sample by M(t, p), or
simply by M if the context is understood. This is a vector function that depends both
on time t and on the location p within the sample. The coordinate functions of M are
denoted by Mx, My, and Mz. That is, for each time t and each point p in the sample,

M(t, p) = 〈Mx(t, p), My(t, p), Mz(t, p)〉.

As discussed above, in the presence of the static magnetic field B0 alone, the equi-
librium nuclear magnetization of the sample is directed along the z-axis. That is, at
equilibrium, M = 〈0, 0, Meq 〉, where Meq is the magnitude of this vector.

In addition to the steady magnetic field B0, a variety of other magnetic fields are
introduced. These additional fields alter the magnitude and alignment of the nuclear
magnetization of the sample and vary both temporally and spatially. Here, we use B =
B(t, p) to denote the total external magnetic field experienced by the sample at time t
and location p.

The Bloch equation models the rate of change over time of the magnetic moment of
the nuclei at each point in the sample. With the notation just introduced, the equation is

dM
dt

= γ M×B− 〈Mx, My, 0〉
T2

− 〈0, 0, Mz −Meq 〉
T1

, (10.1)

where γ , T1, and T2 are constants. For reasons that will be clear soon, the value of γ is
related to the resonant frequency of the system, while T1 and T2 are called the relaxation
times.

In the presence only of the static magnetic field B0 = 〈0, 0, B0 〉, directed along the
z-axis, the Bloch equation simplifies to the system of equations

dMx

dt
= γB0My(t)− Mx(t)

T2
,

dMy

dt
= −γB0Mx(t)− My(t)

T2
.

dMz

dt
= −Mz(t)−Meq

T1
. (10.2)
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The first two of these equations define a first-order linear system with a constant coef-
ficient matrix that can be solved using standard eigenvalue–eigenvector methods. The
third equation can be treated either as a separable equation or as a first order linear
equation. The upshot of this analysis is that

Mx(t) = e−t/T2 (Mx(0)cos(ω0t)−My(0)sin(ω0t)) ,

My(t) = e−t/T2 (Mx(0)sin(ω0t)+My(0)cos(ω0t)) , and

Mz(t) = Mz(0)e−t/T1 +Meq

(
1− e−t/T1

)
, (10.3)

where ω0 = −γB0. Thus, we see that, for times t that are large compared to the value
of T1, the longitudinal component Mz(t) tends toward the equilibrium magnetization
Meq. Meanwhile, in the transverse plane, as the xy-plane is called in this context, the
magnetic moment of the nuclei rotates, or precesses, about the z-axis with angular fre-
quency ω0 = −γB0 radians per second, known as the Larmor frequency. The constant
γ , called the gyromagnetic ratio, typically has a value of about 2.68× 108 radians per
second per tesla, or, equivalently, about 42.6 megahertz (MHz) per tesla. (One hertz is
one cycle per second, or 2π radians per second.) Thus, in a typical MRI experiment, the
Larmor frequency lies in the radio frequency band. In comparison, X-rays have a much
higher frequency of about 3 gigahertz.

As t → ∞, the transverse component of the nuclear magnetization tends to zero,
which does not mean, however, that the precession of the individual nuclei about the
z-axis ceases. Rather, these rotations go out of phase with each other so that the distribu-
tion of the individual moments becomes random and the aggregate transverse compo-
nent tends to zero. In the equilibrium state, each nucleus tends to precess with angular
frequency ω0 about the z-axis with longitudinal component Meq. A useful image, again,
is that of a spinning top whose axis is not vertical but precesses about the vertical with
a fixed frequency.

The constant T1 is called the spin–lattice relaxation time and reflects the dissipation
in energy away from the spinning nuclei (the spin system) as the atomic and molecu-
lar structure (the lattice) of the sample settles into the equilibrium state. The spin–spin
relaxation time, as T2 is known, reflects the randomization of the phases of the spin-
ning nuclei as the aggregate transverse component goes to zero. Thus, T2 reflects the
dissipation of energy within the spin system.

10.4 The RF field

No signal is emitted by the atomic nuclei so long as they are subjected only to the
static magnetic field B0. To knock them out of this equilibrium, a radio frequency (RF)
transmitter is used to apply a linearly polarized RF magnetic field
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B1 = 〈2B1 cos(ω t), 0, 0〉.

This field is generated by sending an oscillating electrical current through a transmit-
ting coil that surrounds the sample. The field B1 oscillates along the x-axis with fre-
quency ω , called the irradiation frequency, and is effectively the sum of two circularly
polarized fields that oscillate in the xy-plane with the same frequency but in opposite
directions. Namely,

B1 = 〈B1 cos(ω t), B1 sin(ω t), 0〉+ 〈B1 cos(ω t), −B1 sin(ω t), 0〉.

Physically, the nuclei, and, hence, the aggregate magnetic moment, are significantly
affected only by the circular field that oscillates in the same direction as the precession.
This means that we may take

B1 = 〈B1 cos(ω t), B1 sin(ω t), 0〉 (10.4)

to be the effective RF magnetic field.
The magnetic field in the longitudinal direction consists of the static field B0 and the

contribution from the gradient field, BG, discussed below. The overall magnetic field
applied to the sample is, then,

B = B1 +B0 +BG = 〈B1 cos(ω t), B1 sin(ω t), B0 +BG 〉. (10.5)

The duration of the RF pulse is short relative to the values of T1 and T2, sufficiently
so that we may ignore the T1 and T2 terms when we analyze the Bloch equation (10.1)
during this time interval. So, in this context, the Bloch equation leads to a system of
linear differential equations with nonconstant coefficients; specifically,

dMx

dt
= γ (B0 +BG)My − γB1Mz sin(ω t),

dMy

dt
= −γ (B0 +BG)Mx + γMzB1 cos(ω t),

dMz

dt
= γB1Mx sin(ω t)− γB1My cos(ω t). (10.6)

To render this system more amenable to solution, it is convenient to introduce a rotat-
ing coordinate frame for the transverse plane, rather than the usual x- and y-coordinates.
To this end, let e1 = 〈cos(ω t), sin(ω t)〉 and e2 = 〈−sin(ω t), cos(ω t)〉, and set

u(t) = Mx(t)cos(ω t)+My(t)sin(ω t) and

v(t) = My(t)cos(ω t)−Mx(t)sin(ω t). (10.7)
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Thus,

Mx = ucos(ω t)− vsin(ω t) and

My = usin(ω t)+ vcos(ω t). (10.8)

The vector 〈Mx(t), My(t)〉 in the standard coordinate frame is the same as the vector
u(t)e1 + v(t)e2 in the rotating frame.

Translated into the rotating frame, (10.6) yields the system

du
dt

= [γ (B0 +BG)+ω ]v,

dv
dt

= − [γ (B0 +BG)+ω ]u+ γB1Mz,

dMz

dt
= −γB1v. (10.9)

Suppose now that the RF transmitter is set so that the irradiation frequency matches
the Larmor frequency. That is, suppose that we set ω = ω0. Then the RF magnetic
field oscillates in resonance with the natural frequency of the nuclei in the presence of
the static field. With the rotating reference frame rotating about the z-axis at the same
frequency as that at which the nuclei precess about the z-axis, it appears, from the point
of view of the nuclei themselves, that they are not precessing at all. In other words,
the apparent effect is as if there were no static field. This is what is behind the use of
the word resonance in the terms nuclear magnetic resonance and magnetic resonance
imaging. To see how this affects the mathematical model, take ω = ω0 =−γB0 in (10.9)
to get the system

du
dt

= γBGv,

dv
dt

= −γBGu+ γB1Mz,

dMz

dt
= −γB1v. (10.10)

If, in addition, we set BG = 0 and assume that B1 is constant, then (10.10) has constant
coefficients and its solution is

u(t) = u(0),

v(t) = v(0)cos(−γB1t)−Mz(0)sin(−γB1t), and

Mz(t) = Mz(0)cos(−γB1t)+ v(0)sin(−γB1t). (10.11)
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Thus, when viewed in the rotating coordinate frame, the aggregate magnetization vector
of the nuclei in the sample precesses around the e1-axis with frequency ω1 = −γB1.
Meanwhile, the e1-axis itself rotates around the z-axis at the Larmor frequency.

10.5 RF pulse sequences; T1 and T2

To generate a signal, suppose that the RF transmitter, whose irradiation frequency
matches the Larmor frequency, is cut off after a time of τ seconds. The nuclear mag-
netic moment will then begin to relax from its state of precession about the e1-axis
back towards its equilibrium state of precession about the z-axis. As mentioned before,
the aggregate nuclear magnetic moment now has a nonzero component transverse to the
static magnetic field. As this net transverse component of the magnetic moment relaxes,
an emf is induced in a coil surrounding the sample.

For instance, suppose that the oscillating RF magnetic field is cut off after time τ1,
where −γB1τ1 = π/2. This is called a π/2 pulse or a 90◦ pulse. From (10.11), we see
that the net magnetization of the sample at time τ1, when viewed in the rotating frame,
is given by

u(τ1) = u(0), v(τ1) = −Mz(0), and Mz(τ1) = v(0). (10.12)

That is, the effect of this RF field is that the orientation of the aggregate magnetization
vector has been flipped by an angle of π/2, or 90◦, from alignment with the z-axis into
alignment with the e2-axis.

A second important RF pulse is the π , or 180◦, pulse, in which an RF magnetic
field, oscillating at the Larmor frequency, is cut off after time τ2, with −γB1τ2 = π .
(Obviously, τ2 = 2τ1.) At the instant when the field is cut off, the net magnetization in
the sample is

u(τ2) = u(0), v(τ2) = −v(0), and Mz(τ2) = −Mz(0). (10.13)

Thus, the orientation of the aggregate magnetization vector has been flipped by an angle
of π , or 180◦, from alignment with the positive z-axis into alignment with the negative
z-axis.

In the inversion recovery method for measuring T1, a 180◦ RF pulse is applied in
order to align the aggregate nuclear magnetization with the negative z-axis. After the
pulse has been cut off, a time τ is allowed to pass, during which the magnetization
partially recovers back toward the equilibrium state. Then a 90◦ RF pulse is applied to
flip the partially recovered magnetization into the xy-plane. Following this pulse, the
resulting signal is acquired. The size of the signal depends on the value of Mz(τ). Once
the signal has been acquired, the magnetization is allowed to relax all the way back to
equilibrium.
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From (10.3), we see that

(Meq −Mz(τ)) = (Meq −Mz(0))e−τ/T1 .

Hence,
ln(Meq −Mz(τ)) = ln(Meq −Mz(0))− τ/T1.

This means that, if we graph the value of ln(Meq −Mz(τ)) against the value of τ , the
result is a straight line of slope −1/T1. The signal acquisition step tells us the value
of Mz(τ), so, by applying the inversion recovery pulse sequence just described for a
variety of values of τ , we can determine the value of T1.

One technical detail is that, because the signals involved are fairly weak, the pulse
sequence should be repeated several times for each selected value of τ in order to in-
crease the signal-to-noise ratio, and thus our confidence, in the measurement of Mz(τ).

The inversion recovery method is typically abbreviated as

(180◦–τ –90◦–AT –t∞)n,

where AT refers to the signal acquisition time and the value of t∞ is large compared
to T1 so that the magnetization has time to relax back to equilibrium. (Generally, take
t∞ > 4 ·T1.) The subscript n indicates the number of times the sequence is to be repeated
for each selected value of τ .

Another approach to measuring T1 is saturation recovery, abbreviated as

(90◦–HS–τ –90◦–AT –HS)n.

In this scheme, HS refers to the application of a magnetic field pulse that destroys the
homogeneity of the static magnetic field and results in a system that is “saturated”—the
nuclear magnetic moments are scattered. After time τ , the magnetization has partially
recovered back toward equilibrium. This magnetization is flipped into the xy-plane by
a 90◦ pulse, and the resulting signal, which depends on Mz(τ), is measured. Then the
field homogeneity is destroyed again and the sequence is repeated. As with inversion
recovery, a semi-log plot of ln(Meq −Mz(τ)) as a function of τ produces a straight line
of slope −1/T1.

The principal method for measuring the value of T2 is called spin-echo. First pro-
posed, in 1950, by Hahn, this method is abbreviated

(90◦–τ –180◦)n.

The initial 90◦ RF pulse flips the magnetization into the xy-plane. Once this pulse has
ended, we would expect the magnetization to precess at the fixed frequency ω0 as it
relaxes back to equilibrium. This would mean a constant component of magnetization
in the direction of the e2-axis in the rotating frame. However, there is really a small
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spread of frequencies, at least partly because of slight inhomogeneity in the static field.
Thus, after some time τ has passed, the nuclear moments have fanned out a bit, with the
ones that are rotating faster getting ahead of the slower ones. Application of a 180◦ RF
pulse has the effect of flipping this fan over in the xy-plane, so that the faster rotators are
now behind the slower ones. Thus, after another time lapse of duration τ , the moments
will come back together, forming an echo of the magnetization that existed immediately
following the original 90◦ pulse. The echo is weaker than the original, though, because
of the random nature of spin–spin relaxation, which cannot be refocused, or undone,
by the echo. During the time interval of length 2τ , the amplitude of the transverse
magnetization will have diminished, or relaxed, by a factor of e−2τ/T2 . By repeating the
process, we increase the signal-to-noise ratio in the measurements.

A variation on the spin-echo method is to use a train of 180◦ RF pulses spaced at
intervals of 2τ , with signal acquisition midway between successive pulses.

10.6 Gradients and slice selection

The work we have done so far provides the foundation for the methods of NMR spec-
troscopy. There, the investigator’s aim is basically to create a graph of the spectrum of
the signal generated by the nuclear magnetic moments in a sample as they respond to
some specific RF pulse sequence. As we shall discuss below, the different frequency
components present in the signal, and their corresponding amplitudes, provide infor-
mation about the variety of relaxation times and, hence, the variety of chemical envi-
ronments present in the sample. In this way, the investigator can analyze the chemical
composition of the sample.

The insight that earned a Nobel Prize for Lauterbur was that, by introducing yet
another carefully controlled component to the magnetic field, it is possible to restrict
the fluctuation in the aggregate magnetic moment of the sample to a specified slice
within the sample. In other words, it is possible to localize the behavior of the nuclear
magnetic moments and thereby generate an image of a specified slice that reveals the
locations of the various chemical environments to be found there. This is the core idea
behind magnetic resonance imaging, or MRI. A typical MRI study consists of creating
a whole series of such images that, collectively, help the investigator to form a sense of
the three-dimensional composition and structure of a sample.

The key to slice selection is to introduce a magnetic field, BG, that is oriented in
the same direction as the static external field but that varies in magnitude according
to the location within the sample. To achieve this, BG is actually composed of three
separately controlled magnetic fields. The first of these three varies in magnitude in
proportion to the x-coordinate of the point in the sample; the magnitude of the second
field is proportional to the y-coordinate of the location; and the magnitude of the third
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field is proportional to the z-coordinate. That is, there are constants G1, G2, and G3

such that, at the point p = 〈x, y, z〉,

BG(p) = 〈0, 0, G1x+G2y+G3z〉
= 〈0, 0, G············p 〉, (10.14)

where G = 〈G1, G2, G3 〉. This magnetic field is called a gradient field because the
constants G1, G2, and G3 measure the gradient of the field as the location varies within
the sample. The magnitude of BG at the point p is BG(p) = |G············p|.

Geometrically, the set {p : G············p = 0} defines a plane through the origin with normal
vector G. Now, let

G = |G| =
√

G2
1 +G2

2 +G2
3

and observe that, for any given number α > 0, the vector rα = (α/G)G satisfies
rα ············G = αG and |rα | = α . Thus, the set

{p : |G············p| ≤ αG} (10.15)

defines a slice of thickness 2α centered at the origin and normal to G. In this way, we
can select a slice of the sample that we wish to image, identify an appropriate normal
vector G, and tailor the gradient magnetic field BG accordingly. (Experimentally, it is
possible to locate the origin at any desired point within the sample, so it suffices to
consider slices centered on the origin.)

The total magnetic field is now given by (10.5) and the Bloch equation has the form
given in (10.6). Taking ω = ω0 =−γB0, the Larmor frequency, and viewing the system
in the rotating frame (10.7), the Bloch equation translates into the system in (10.10).
That is, we have

du
dt

= γBGv,

dv
dt

= −γBGu+ γB1Mz,

dMz

dt
= −γB1v. (10.16)

The T1 and T2 terms are not present in this system, so we are assuming that the
duration of the gradient magnetic field is short compared to the relaxation times. If we
also assume that the RF field B1 is weak, then (10.16) yields Mz(t)≈ Mz(0) and we can
write the other two equations as
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du
dt

= γBGv = −ωGv,

dv
dt

= −γBGu+ γB1Mz(0) = ωGu+ γB1Mz(0), (10.17)

where ωG = −γBG.
Now introduce the complex-number-valued function

φ(t) = u(t)+ i · v(t). (10.18)

Differentiating, and using (10.17), we get

dφ
dt

=
du
dt

+ i · dv
dt

= −ωGv+ i ·ωGu+ i · γB1Mz(0)
= i ·ωG ·φ(t)+ i ·B1Mz(0). (10.19)

This is a first-order linear differential equation with integrating factor e−iωGt . With the
initial condition φ(0) = 0, the solution is

φ(t) = iγMz(0)eiωGt ·
{∫ t

0
B1(s) · e−iωGs ds

}
. (10.20)

Substituting ωG = −γBG = −γ(G············p) into (10.20) gives us

φ(t, p) = iγMz(0)e−iγ(G············p)t ·
{∫ t

0
B1(s) · eiγ(G············p)s ds

}
. (10.21)

Next, note that the RF pulse is exactly that—a pulse. So it shuts off after a certain
amount of time τ . Thus, B1(s) = 0 for s ≤ 0 and for s > τ . It follows that φ(t, p) =
φ(τ, p) for all t > τ . Using (10.21) and a change of variables in the integration, we see
that, for t > τ ,

φ(t, p) = iγMz(0)e−iγ(G············p)τ ·
{∫ τ

0
B1(s) · eiγ(G············p)s ds

}

= iγMz(0)e−iγ(G············p)τ ·
{∫ τ/2

s=−τ/2
B1(s+ τ/2) · eiγ(G············p)(s+τ/2) ds

}

= iγMz(0)e−iγ(G············p)τ/2 ·
{∫ τ/2

s=−τ/2
B1(s+ τ/2) · eiγ(G············p)s ds

}
. (10.22)

Moreover, it follows from (10.22) that

|φ(t, p)| = γ |Mz(0)| ·
∣∣∣∣
∫ τ/2

s=−τ/2
B1(s+ τ/2) · eiγ(G············p)s ds

∣∣∣∣ . (10.23)
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The integral in (10.22) and (10.23) is approximately equal to the inverse Fourier
transform of the function B1(s + τ/2) evaluated at γ(G············p), provided that the value of
B1(s+ τ/2) is small when |s| > τ/2. In particular, if B1 is a Gaussian, then the inverse
Fourier transform of B1 is also a Gaussian (see (5.20)). Hence, from (10.23), |φ(t, p)|
will be “large” when |G············p| is small and, just as importantly, |φ(t, p)| will be “small”
when |G············p| is large.

Specifically, consider the slice of thickness 2α defined, as in (10.15), by

{p : |G············p| ≤ αG} .

Shaping the RF pulse so that

B1(s+ τ/2) = e−(αγGs)2/8 (10.24)

results in
|φ(t, p)| proportional to e−2(G············p

α·G )2

. (10.25)

Since
∫ 1
−1 e−2x2

dx ≈ 0.9545 · ∫ ∞
−∞ e−2x2

dx, the Gaussian in (10.25) has about 95%
of its area in the selected slice. Hence, the transverse nuclear magnetic moment, as
measured by |φ(t, p)|, is predominantly concentrated in that slice.

10.7 The imaging equation

Having explored how an array of magnetic fields can be carefully orchestrated to pro-
duce a spatially-encoded fluctuation in the transverse component of the nuclear mag-
netic moment of a sample, we will examine now, in only the coarsest fashion, how this
leads to an image that is clinically useful.

The fluctuating magnetization of the nuclei in the sample induces an electromotive
force (emf) in a coil surrounding the sample. Faraday’s law of induction shows how to
express this induced emf in terms of the derivative of the magnetization. In practice, it is
most convenient to represent the magnetization in the sample by the complex-number-
valued function

M∗(t, p) = Mx(t, p)+ i ·My(t, p). (10.26)

It follows from (10.7) and (10.18), that

|M∗(t, p)|2 = (Mx(t, p))2 +(My(t, p))2

= (u(t, p))2 +(v(t, p))2

= |φ(t, p)|2 .
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Thus, in the presence of the gradient magnetic field BG, the value of M∗ is “large”
inside the selected slice and “small” outside the slice.

The signal that is induced in the coil is sent through a preamplifier and then is sub-
jected to a variety of treatments, including a phase detection step that shifts the signal
down in frequency by ω0 so that the frequencies present in the modified signal are
centered around 0. This modification simplifies the signal analysis in later steps. Ap-
plication of a low-pass filter increases the signal-to-noise ratio. At this stage, the signal
S(t), induced by the nuclear magnetization and modified by the receiver system, can be
represented as

S(t) = K
∫

M∗(t, p) exp(−iω t)dp, (10.27)

where K is some complex number constant. This formula is called the imaging equa-
tion. It expresses the signal S(t) as the (2- or 3-dimensional) Fourier transform of the
complex transverse magnetization M∗ of the sample. Thus, the function M∗ can be
recovered, and an image of it created, by applying the inverse Fourier transform.

In practice, the signal is sampled at a discrete set of times {k ·Δ t} and the inversion
is done on a digital computer. Thus, some of the techniques discussed in Chapter 8
come into play, including sampling, the discrete Fourier transform and its inverse, and
the fast Fourier transform.

10.8 Exercises

10.1. Verify that (10.3) is the solution to the system (10.2).

10.2. Verify that the system (10.6) is equivalent to the system (10.9) when translated
into the rotating coordinate frame for the transverse plane.

10.3. Verify that (10.11) gives the solution to the system (10.10).

10.4. Verify that (10.20) is the solution to the system (10.19).



Appendix A

Integrability

A.1 Improper integrals

The Radon transform, back projection, and Fourier transform all involve improper in-
tegrals, evaluated over infinite intervals. We have applied these concepts, computing
examples and proving theorems, without considering the more technical questions of
how these improper integrals are defined and for what functions they make sense. We
ought not evade these questions completely, so let us now attend to them.

Consider a function f , defined on the real line and having either real or complex
values, with the property that the integral

∫ b
a f (x)dx exists for every finite interval [a,b].

If the limit limb→∞
∫ b

a f (x)dx exists, then we denote this limit by
∫ ∞

a f (x)dx and we say
that this improper integral converges. That is,

∫ ∞

a
f (x)dx = lim

b→∞

∫ b

a
f (x)dx

provided the limit exists.
Similarly, ∫ b

−∞
f (x)dx = lim

a→−∞

∫ b

a
f (x)dx

provided the limit exists, in which case we say that the improper integral
∫ b
−∞ f (x)dx

converges.
If both of the improper integrals

∫ ∞
a f (x)dx and

∫ a
−∞ f (x)dx converge for some real

number a, then we define
∫ ∞

−∞
f (x)dx =

∫ a

−∞
f (x)dx+

∫ ∞

a
f (x)dx.
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Again we say that the improper integral
∫ ∞
−∞ f (x)dx converges and the function f is

said to be integrable on the real line. If | f | is integrable on the real line, then we say
that f is absolutely integrable.

Some facts about improper integrals are similar to facts about infinite series. Here
are a few, with the proofs left as exercises.

• If f and g are both integrable on [a,∞) and if c is any number, then f + cg is also
integrable on [a,∞) and

∫ ∞

a
( f + cg)(x)dx =

∫ ∞

a
f (x)dx+ c

∫ ∞

a
g(x)dx.

• If f ≥ 0 and the set S = {∫ b
a f (x)dx : b ≥ a} is bounded above, then

∫ ∞
a f (x)dx

converges to the least upper bound of the set S .
• If | f (x)| ≤ g(x) for all real x and the integral

∫ ∞
a g(x)dx converges, then

∫ ∞
a f (x)dx

also converges and |∫ ∞
a f (x)dx| ≤ ∫ ∞

a g(x)dx. (This is a form of the comparison
test. To prove it for f real-valued, apply the previous facts to f = f+− f−, where
f+(x) = max{ f (x),0} and f−(x) = −min{ f (x),0}.)

• If
∫ ∞

a | f (x)|dx converges, then so does
∫ ∞

a f (x)dx. In words, if f is absolutely
integrable on [a,∞), then f is integrable there. This is a corollary of the previous
fact. The converse statement is not true.

Similar statements prevail regarding improper integrals on (−∞,b) or on (−∞,∞).

One large class of functions to which we can look for examples are the piecewise
continuous functions. A real- or complex-valued function f , defined on the real line,
is piecewise continuous if, in every finite interval [a,b], there are only a finite number
of points at which f is discontinuous and if the one-sided limits limx→α− f (x) and
limx→α+ f (x) both exist at each point of discontinuity α . Hence, we see that a piecewise
continuous function is integrable on every finite interval of the real line. This is the
starting point for asking whether any of the improper integrals above converge. The
class of piecewise continuous functions will be denoted by PC . This class includes all
functions that are continuous on the real line.

Lebesgue’s theory of integration makes it possible to extend the notion of integra-
bility on the real line to more functions than the piecewise continuous ones. We will
not go into this far-reaching theory here, but we will borrow the notation L1 to denote
the class of all (Lebesgue integrable) functions that are absolutely integrable on the real
line. Thus, for instance, the set of piecewise continuous functions that are absolutely
integrable is denoted by L1 ∩PC .

Since | f (x)e−iωx| = | f (x)| for all real numbers x and ω , it follows from the above
facts that every function in L1 has a Fourier transform. The Fourier inversion theorem
(Theorem 5.11), however, applies only to continuous functions in L1, though a modified
version of it applies to functions in L1 ∩PC . This is ample motivation for restricting
our attention mainly to functions in L1 ∩PC .
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A.2 Iterated improper integrals

Another technical matter is the manipulation of iterated improper integrals over the
plane. This shows up in the proof of the Fourier inversion theorem (Theorem 5.11), for
instance, where the order of integration with respect to the two variables is switched in
the middle of the proof. This begs the question of whether such a step is justified.

Suppose that g is a continuous function of two real variables such that, for some real
number a, the improper integral

∫ ∞
a g(x,y)dx converges for every value of y in some

interval J = [α ,β ]. Then we say that this improper integral converges uniformly on J
provided that, for every ε > 0, there exists a number B such that

∣∣∣∣
∫ b

a
g(x,y)dx−

∫ ∞

a
g(x,y)dx

∣∣∣∣ < ε (A.1)

for all b > B and all y ∈ J.
The relevant facts, found in standard texts in elementary real analysis (such as [2],

for example), are these.

(i) With g as in the preceding paragraph, if
∫ ∞

a g(x,y)dx converges uniformly on the
interval J, then the integral is a continuous function of y on J.

Proof. For each natural number n, let Gn(y) =
∫ a+n

a g(x,y)dx. Each function Gn is
continuous on J and the sequence {Gn} converges uniformly on J to the function
G(y) =

∫ ∞
a g(x,y)dx. Hence, the function G is also continuous on J. �

(ii) Again supposing g to be a continuous function of two real variables, if the integral∫ ∞
a g(x,y)dx converges uniformly on the interval J = [α ,β ], then the improper

integral
∫ ∞

a

∫ β
α g(x,y)dydx converges and

∫ ∞

a

∫ β

α
g(x,y)dydx =

∫ β

α

∫ ∞

a
g(x,y)dxdy.

Proof. With Gn and G as defined in the preceding proof, the uniform convergence
implies that ∫ β

α
G(y)dy = lim

n→∞

∫ β

α
Gn(y)dy.

That is, ∫ β

α

∫ ∞

a
g(x,y)dxdy = lim

n→∞

∫ β

α

∫ a+n

a
g(x,y)dxdy.

The continuity of g implies that iterated integrals over finite rectangles can be
evaluated in either order, so that

∫ β

α

∫ a+n

a
g(x,y)dxdy =

∫ a+n

a

∫ β

α
g(x,y)dydx.
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Hence,

lim
n→∞

∫ β

α

∫ a+n

a
g(x,y)dxdy =

∫ ∞

a

∫ β

α
g(x,y)dydx

and the desired result follows. �
(iii) If g is continuous for x ≥ a and y ≥ α , and if the improper integrals

∫ ∞
a |g(x,y)|dx

and
∫ ∞

α |g(x,y)|dy converge uniformly on every finite interval, then if either of the
integrals

∫ ∞
a

∫ ∞
α |g(x,y)|dydx or

∫ ∞
α

∫ ∞
a |g(x,y)|dxdy converges,

∫ ∞

a

∫ ∞

α
g(x,y)dydx =

∫ ∞

α

∫ ∞

a
g(x,y)dxdy.

Proof. Suppose that g ≥ 0 and that the integral
∫ ∞

α
∫ ∞

a g(x,y)dxdy converges. It
follows from the previous result and the nonnegativity of g that, for each b > a,

∫ b

a

∫ ∞

α
g(x,y)dydx =

∫ ∞

α

∫ b

a
g(x,y)dxdy

≤
∫ ∞

α

∫ ∞

a
g(x,y)dxdy.

Hence,
∫ ∞

a

∫ ∞
α g(x,y)dydx converges by the comparison test, and

∫ ∞

a

∫ ∞

α
g(x,y)dydx ≤

∫ ∞

α

∫ ∞

a
g(x,y)dxdy.

Reversing the above argument shows that
∫ ∞

a

∫ ∞

α
g(x,y)dydx ≥

∫ ∞

α

∫ ∞

a
g(x,y)dxdy,

from which it follows that the integrals are equal, as claimed.

In general, for a real- or complex-valued function g that satisfies the hypotheses,
we may write g = g1 −g2 + ig3 − ig4, where each of the functions g j satisfies 0 ≤
g j ≤ |g|. (For instance, take g1(x,y) = max{ℜg(x,y),0}.) The result then applies
to each g j and, by the linearity of the integral, to g itself. �

A.3 L1 and L2

A function f defined on the real line is in the class L2, and is said to be square-inte-
grable, if the (improper) integral

∫ ∞
−∞ | f (x)|2 dx is finite. Neither L1 nor L2 is a subset

of the other. For instance, the function f given by
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f (x) =
{

1/x if x ≥ 1,
0 if x < 1

is in L2 but not in L1, while the function g defined by

g(x) =
{

1/
√

x if 0 < x ≤ 1,
0 otherwise

is in L1 but not in L2.
The Rayleigh–Plancherel theorem (Theorem 7.8) applies to any absolutely inte-

grable function f for which either f or its Fourier transform F f is square-integrable.
In particular, for f in L1 ∩L2, it follows from (7.15) that F f is in L2. Moreover, the
mapping f 	→ F f is an isometry from L1 ∩L2 into L2.

It is a fact that L1 ∩L2 is dense in L2 in the sense that, for every function f in L2,
there exists a sequence of functions { fk} in L1 ∩L2 such that

lim
k→∞

∫ ∞

−∞
| f (x)− fk(x)|2 dx = 0.

(For instance, one may take fk to be the restriction of f to the interval [−k,k].) Each
of the Fourier transforms F fk is a well-defined function in L2, and we may therefore
define the Fourier transform of f to be the limit of the transforms F fk. (This limit exists
because of the isometry implied by (7.15) and the fact that the space L2 is complete.)

A modified form of the Fourier inversion theorem (Theorem 5.11) also holds in the
L2 setting so that, in the end, the mapping f 	→ F f defines an isometric mapping from
L2 onto L2. See Chapter 9 of [37] for a more in-depth discussion of these ideas.

A.4 Summability

Just as the Fourier transform and many of the theorems and computations accompa-
nying it required the manipulation of improper integrals, so working with the discrete
version of the Fourier transform can, in principle, involve working with infinite series
and iterated infinite series. In practice, however, the discrete functions we use are al-
ways finite lists and the important theorems, like (8.22) and (8.24) to name two, use
only finite sums.

The study of infinite series, Fourier series, and sequence spaces such as �1 and �2 is
well worth the investment, but lies beyond the scope of our work here. The books [2]
and [38] are good places to start.



Appendix B

Topics for Further Study

• For a wealth of information about the Radon transform and its generalizations,
as well as an extensive list of references on this topic, see the monograph [20].
Investigate the interaction between the Radon transform and the derivative in order
to better understand Radon’s original inversion formula.

• The Fourier transform, like Fourier series, was developed originally in the study of
differential equations related to the propagation and diffusion of heat. The interac-
tion between the Fourier transform and derivatives was mentioned in the exercises
but did not figure into the discussion of CT scans. Moreover, the Fourier transform
is a primary tool of physicists, astronomers, and engineers that is used to tackle a
broad range of problems. See Bracewell’s definitive treatise [6] for much more on
this topic.

• We have focused on the filtered back-projection algorithm as well as some basic
ART techniques. We have not discussed so-called direct Fourier inversion, which
takes the central slice theorem (Theorem 6.1) as its starting point. The filtered back
projection (Theorem 6.2) is primarily what is used in current practice. Nonethe-
less, direct Fourier inversion is a worthwhile subject.

• Study the effect of incorporating finite (nonzero) X-ray beam width into the algo-
rithms for CT.

• Investigate the fan beam, spiral beam, and cone beam geometries and their use
in CT scan technology. The latter two methods can reduce the radiation exposure
time of the patient by collecting data in all three dimensions at once.

• Investigate the use of wavelets, rather than the Fourier transform, in signal analy-
sis. Wavelets are particularly useful for analyzing signals that are of short duration
or that come in bursts. Wavelets are also at the core of the signal compression
methods used, for example, in the creation of mp3 music and sound files.
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• Study the evolution of the scanning machines themselves, from the earliest EMI
scanner designed by Hounsfield to the 5th generation machines that employ elec-
tron beam CT.

• In positron emission tomography (PET) and single-photon emission computed to-
mography (SPECT), a radioactive isotope is introduced internally into the patient.
This isotope tends to bind to areas where certain pathologies are present or certain
physiological functions in effect. Positrons are emitted from the sample in pairs
moving in opposite directions. When the intensities of a matching pair are mea-
sured by external detectors, the sum of the measurements yields a value of the
Radon transform along the line defined by the paths of the two particles. Then
a modified version of the CT analysis discussed here can be applied to form an
image. So PET and SPECT are like “inside-out” versions of CT. See [24] for an
introduction to these types of tomography.

• The study of Fourier series predates the development of the Fourier transform
historically. Though we have alluded to the theory of Fourier series in only a few
places in the present work, it nonetheless inspires and informs the transform theory
and is a cornerstone of the branch of mathematics known as functional analysis.

• Functional MRI (fMRI) exploits the difference in the magnetic response of nu-
clei contained in oxygenated blood compared to those in deoxygenated blood.
Increased neuronal activity requires a rapid influx of oxygen to the area of the
activity, where the additional oxygen is consumed by the active neurons. MRI im-
ages that portray these magnetic variations are created during many repetitions of
some activity or experience, such as performing mental arithmetic. Then statistical
methods are used to determine which areas of the brain can reliably be said to be
most active during the activity.

• For the strongest versions of many of the theorems in Chapters 5 and 7, as well
as for a careful error analysis of the discrete approximations discussed in Chapter
8, we would require a deeper understanding of the spaces L1 and L2 of integrable
functions and of the theory of integral operators and kernel functions.

• In this book, only a little attention has been given to the computer implementation
of the image reconstruction algorithms discussed in Chapter 8. For instance, the
imaging toolbox in MATLABR has subroutines for both the discrete Radon trans-
form of a phantom and the discrete filtered back projection of data. Options in the
latter subroutine include the choice of the interpolation method and of the filter
function. MapleR has both continuous and discrete versions of the Fourier trans-
form and the inverse transform built in and was used to create many of the figures
in this book. It would be interesting to look more closely at the computational
process that is encoded into the scanning machines used in clinical practice.
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F 33
�t,θ 7
R 11∧

(tent) 56
δ (Dirac) 39
a 40

A

affine projection 108
affine space 107–108
ART 101–113
attenuation coefficient 3

B

back projection 19–23
and convolution 62
discrete 82
filtered 49

band-limited function 64, 65
Beer’s law 4–5
Bloch equation 118
Bloch, Felix 115

C

central slice theorem 47
complex exponential 27
complex numbers 25–30
convolution 55

2-dimensional 62
and Fourier transform 58–60, 80
discrete 74

Cormack, Allan McLeod xi
cubic spline 83

D

DeMoivre’s law 28
Dirac δ 39

Fourier transform of 39, 42
discrete function 74

N-periodic 74
dynamical systems 109

E

Euler’s formula 27
Euler, Leonhard 27
exponential function

complex 27

F

fast Fourier transform see FFT
FFT 92–97
filter 53

and medical imaging 64–65
low-pass 64, 70–72
low-pass cosine 65, 98
Ram–Lak 65, 72
resolution 58
Shepp–Logan 65, 71

filtered back projection 49
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discrete 67
fMRI 136
Fourier series 30, 68, 136
Fourier transform 33–44, 135

and L2 133
and convolution 58–60
and MRI 128
and Radon transform 47
discrete 77, 91

and convolution 80
discrete inverse 79
inverse of 40
inversion theorem 40, 79
multivariable 43–44

Fourier, Jean-Baptiste Joseph 30
FWHM 58

of a Gaussian 58
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Gaussian
and MRI 127
Fourier transform of 33, 42
FWHM of 58

H

Heaviside function 38
Heisenberg, Werner 116
Hilbert transform 51
Hilbert, David 51
Hounsfield unit 3
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image reconstruction 86
fundamental question of 7, 9

integration 129–132
L1, L2 132–133, 136
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and convolution 85–86
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K

Kaczmarz’s method 103, 107–113

L

Larmor frequency 119, 121, 122, 125
Lauterbur, Paul 116, 124

least squares 103–107
normal equation 105, 106

Lorentzian 46, 66

M

magnetic resonance 115–128
T1, T2 66, 117–119, 122–124
fMRI 136
relaxation constants 66

Mansfield, Peter 116

N

Nyquist distance 69
Nyquist’s theorem 69

P

PET xii, 136
phantom 16

Shepp–Logan 16, 23
pixel basis 101
power spectrum 60
Purcell, Edward 116

R

Radon transform 11–17, 19
and ART 102
and back projection 20
and convolution 62
and Fourier transform 47
discrete 73

Radon, Johann xi, 11
Ram–Lak filter 65, 72
Rayleigh–Plancherel

theorem 60, 81, 133

S

sampling 68–70
oversampling 70

sarcophagus 1
Shepp–Logan

filter 65, 71
phantom 16, 23

sinogram 14
SPECT 136
spin–lattice relaxation see

magnetic resonance, T1, T2
spin–spin relaxation see

magnetic resonance, T1, T2
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tomography 7

V

van Vleck, John 116

W

wavelets 135
window function 64

X

X-rays 1–5
beam width 3, 135
cone beam 135
fan beam 97–98, 135
parallel beam 73
spiral beam 135
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zero padding 75
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