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Abstract

Suppose that we are given N distinct permutations of the symmetric group Sn of degree n

which are at most far from an unknown permutation χ by a positive integer r > 1 with respect

to the Hamming distance. Under what conditions it is possible to determine χ uniquely? This

question is answered positively by Levenshtein that there exists an integer N(n, r) depending

only on (n, r) such that if N > N(n, r), then we are done. The new question is to determine

exactly the least possible value of N(n, r). The values of N(n, r) is known for r ∈ {2, 3, 4} by

Wang, Fu and Konstantinova. Here we find N(n, 5).
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1 Introduction

The sequence reconstruction problem, introduced by Levenshtein [3], involves reconstructing

a transmitted sequence from multiple noisy copies received over distinct channels, each in-

troducing at most r errors. This problem is motivated by applications in DNA storage [2],

racetrack memories, and communication systems. In combinatorial terms, a key challenge is

to determine the maximum intersection size N(n, r) of two metric balls of radius r centered at

distinct sequences. For permutations under the Hamming metric, this problem remains central

due to the relevance of permutation codes in flash memories [1], power-line communications

and DNA storage [4].

Main contributions of [5] resolves the sequence reconstruction problem for permutations

under Hamming errors for small radii (r ≤ 4) and provides asymptotic bounds for larger r.
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In particular it is proved that N(n, 2) = 3 (n ≥ 3) [5, Theorem 4]; N(n, 3) = 4n − 6 (n ≥ 3)

[5, Theorem 5]; and N(n, 4) = 7n2 − 31n+ 36 (n ≥ 4) [5, Theorem 6]. For example the latter

implies that unique reconstruction requires N(n, 4)+1 = 7n2−31n+37 distinct permutations

at distance ≤ 4.

2 Main Results

Theorem 2.1. For any n ≥ 5,

N(n, 5) =
32

3
n3 − 89n2 +

739

3
n− 220. (1)

Proof. Here by using some elementary results about action of groups on sets, we find an

algorithm with input r and output N(n, r). Applying the algorithm we find the exact value

of N(n, 5).
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