Improved Permutation Arrays for Kendall-au Metric

(Ivan) Hal Sudborough
Emeritus Professor
Department of Computer Science
University of Texas at Dallas

Co-authors: Sergey Bereg, William Bumpass, Mohamadreza Haghpanah, and Brian Malouf

Definitions:

Let π and σ be permutations on $Z_n = \{1, 2, ..., n\}$.

An adjacent transposition (bubble sort operation) exchanges two adjacent symbols. For example, 1 2 3 4 5 \rightarrow 1 2 4 3 5 and 1 2 3 4 5 \rightarrow 2 1 3 4 5.

The *Kendall-\tau distance* between π and σ , denoted by $d(\pi, \sigma)$, is the minimum number of adjacent transpositions to transform π into σ .

For a set (array) of permutations A, i.e. PA, the distance of A, denoted d(A), is the minimum Kendall- τ distance between any two permutations in A.

Definitions and Preliminaries:

For positive integers n and d, let P(n,d) denote the maximum size of any PA A of permutations on Z_n with distance d.

It is known that, for any n, P(n,1) = n! and P(n,2)=n!/2.

Exact values of P(n,d) are not known generally. Research has focused on obtaining good lower bounds and upper bounds on P(n,d).

Lower Bounds

Theorem 1 (Wang, Zhang, Yang, and Ge; Designs, Codes and Crypto. 2017)

Let m =
$$\frac{(n-2)^{t+1}-1}{n-3}$$
, where n-2 is a prime power, then
$$P(n,2t+1) \ge \frac{n!}{(2t+1)m}$$

Examples of Theorem 1:

- (a) $P(9,7) \ge 129.6$ (We show $P(9,7) \ge 1,008$, by a Random/Greedy alg.)
- (b) $P(9,11) \ge 1.62$ (We show $P(9,11) \ge 101$, by a Random/Greedy alg.)
- (c) $P(7,9) \ge 14.39$ (We show $P(7,9) \ge 16$, using an automorphism alg.)

Using automorphisms

It is known that if P is a permutation polynomial (PP) on F_q , i.e. P: $F_q \to F_q$ is a permutation, where F_q is a field of order q, then

- (a) Multiplying by a non-zero constant 'a', i.e. 'a' times P(x),
- (b) Adding a constant 'b' to the argument, i.e. P(x+b), and
- (c) Adding a constant 'c', i.e. P(x)+c, yields another PP.

We use a program to search for representative PPs of equivalence classes defined by combinations of operations (a)-(c). The program finds the largest set of representatives for which the entire class has the stipulated Kendall- τ distance. (This was also done by Buzaglo and Etzion in "Bounds on the size of permutation codes with the Kendall- τ metric", IEEE Trans. on Info. Theory, 2015. They showed P(7,3) \geq 588.)

Example

Use operations aP(x)+c on the following 14 representatives found for F_9 at Kendall- τ distance 7:

012483756	012785346	013472865	013826745
013846572	014567382	014582763	016234785
016287543	016452387	016734852	017246853
017483526	018574632		

Since there are 8 choices for 'a' and 9 choices for 'b', this yields 8*9*14=1,008 permutations. Thus, we have $P(9,7) \ge 1,008$.

Using a Greedy program with randomness

 $Kl\phi$ ve, Lin, Tsai, Tzeng in "Permutation arrays under the Chebyshev distance", IEEE Trans. On Info. Theory, 2010 described the following Greedy algorithm:

Let the identity permutation be the 1st permutation in C. For any set C chosen, choose the next permutation in C to be the lexicographically next permutation in S_n with distance at least d to all in C, if one exists.

We modified this program to initially choose randomly a specified number of permutations at distance at least d to put into C. We call the program "Random/Greedy". We used Random/Greedy with Kendall- τ distance to get improved lower bounds for P(n,d).

Example:

Using Random/Greedy we found 16 permutations for P(7,9):

2467531	1367452	4521736	6532147
1546732	2356741	5317246	6754312
1234567	3427165	5726143	7362154
1267543	3456712	6421357	7416235

So, $P(7,9) \ge 16$.

Table: Some Current Lower Bounds for P(n,d)

n\d	3	4	5	6	7	8	9	10	11
5	20	12	6	5	2	2	2	2	
6	102	64	26	20	11	7	4	4	2
7	<mark>588</mark>	<mark>336</mark>	<mark>126</mark>	<mark>84</mark>	<mark>42</mark>	<mark>28</mark>	16	13	8
8	3,752	<mark>2,240</mark>	<mark>672</mark>	<mark>448</mark>	<mark>168</mark>	115	57	<mark>48</mark>	26
9	26,831	15,492	3,882	2,497	<mark>1,008</mark>	608	<mark>288</mark>	195	101
10	233,421	133,251	29,113	18,344	5,629	3,832	1,489	1,066	492
11	<mark>1,330,560</mark>	<mark>700,263</mark>	247,014	153,260	42,013	28,008	9,747	6,890	2,861
12	<mark>13,305,600</mark>	<mark>6,652,800</mark>	899,809	595,160	129,298	85,091	73,068	50,649	19,227

Computing Lower Bounds for P(n,d), for larger n and d

To compute a lower bound for a (n,d)-array A, say by a Random/Greedy iterative algorithm, all n! permutations are considered, and, for each one, its distance to every permutation in the current set A is computed.

For example, to compute a (18,15)-array A, this means $18! > 6.4 \times 10^{15}$ permutations + distances.

This is not feasible. We now describe more efficient methods.

Example: To compute a lower bound for P(13,11).

By Theorem 1, with
$$m = \frac{(11)^6 - 1}{10} \approx 177,166$$
, $P(13,2*5+1) \ge \frac{13!}{11*m} \approx 3,195$.

Jiang, Schwartz, and Bruck in "Correcting charge-constrained errors in the rank-modulation scheme", *IEEE Trans. on Info. Theory, 2010*, gave the following:

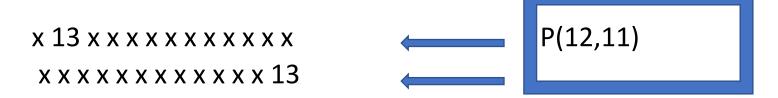
Theorem 2. For all n,d >1, we have
$$P(n+1,d) \ge \left\lceil \frac{n+1}{d} \right\rceil * P(n,d)$$
.

This gives
$$P(13,11) \ge \left\lceil \frac{13}{11} \right\rceil * P(12,11) \ge 2*19,227 = 38,454.$$

This is good, but we can do better.

Example: To compute a lower bound for P(13,11) (continued)

(By the previous Theorem 2). Create a (13,11)-PA from two copies of (12,11)-PA:



Let us generalize:

Let $S_{n,m}$ denote the set of all permutations on Z_n =[1 ... n] with the restriction that the first n-m symbols are in sorted order, for any given m < n. A set A $\subseteq S_{n,m}$ with Kendall- τ distance d is called a (n,m,d)-PA or (n,m,d)-array. Let P(n,m,d) be the maximum cardinality of any (n,m,d)-array.

Example: To compute a lower bound for P(13,11) (continued)

For any permutation π in a (n,m,d)-array A, let P_{π} (n,d) denote the maximum cardinality of any (n,d)-array with the highest m symbols in the same positions as in π , but where the other n-m symbols can be in any order.

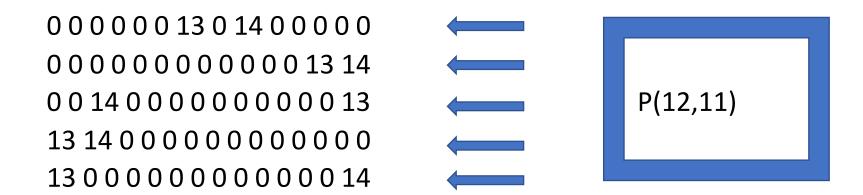
Theorem 3. For any (n,m,d)-array A, $P(n,d) \ge \sum_{\pi \in A} P_{\pi}(n,d)$.

So, $P(13,11) \ge 51,036$. Let us now compute a lower bound for P(14,11).

Example: To compute a lower bound for P(14,11)

By iteration of Theorem 2, $P(14,11) \ge \left[\frac{14}{11}\right] * \left[\frac{13}{11}\right] * P(12,11) = 4 * P(12,11) \ge 76,908$.

An improvement, using Theorem 3: by a modification of the Random/Greedy program, we computed a (14,2,11)-array with 5 permutations, where the first 12 symbols in each permutation are here replaced by 0's for ease of reading:



Thus, we get $P(14,11) \ge 5 * P(12,11)$. Since, $P(12,11) \ge 19,227$, $P(14,11) \ge 96,135$.

Example: To compute a lower bound for P(14,11) (continued)

So, $P(14,11) \ge 141,782$.

We can do better.

Example: To compute a lower bound for P(14,11) (continued)

Use a (14,8,11)-array instead of a (14,2,11)-array.

There are, in general, n!/(n-m)! permutations in $S_{n,m}$. In particular, there are 17,297,280 permutations in $S_{14,8}$. So, this is feasible.

We computed a (14,8,11)-array of 7,909 permutations by a modification of a Random/Greedy algorithm. That is, there is a set A of 7,909 permutations in $S_{14,8}$ with pairwise Kendall- τ distance 11.

Example: To compute a lower bound for P(14,11) (continued)

For each of the 7,909 permutations π in A, compute a lower bound for $P_{\pi}(14,11)$, denoted by LB($P_{\pi}(14,11)$).

We computed lower bounds for each $P_{\pi}(14,11)$, $\pi \in A$, by a modification of a Random/Greedy algorithm. The algorithm takes as input the file A and outputs the sum of $\{LB(P_{\pi}(14,11)) \mid \pi \text{ in A}\}$

The sum of { LB($P_{\pi}(14,11)$) | π in A } is 177,098.

So, $P(14,11) \ge 177,098$.

Example: To compute a lower bound for P(18,15)

By Theorem 1, with m =
$$\frac{(16)^8 - 1}{15} \approx 2.86 \times 10^8$$
, P(18,2*7+1) $\geq \frac{18!}{15*m} \approx 1,490,669$

By computation, $P(18,8,15) \ge 9,856$. That is, there is a set A of 9,856 permutations in $S_{18.8}$ with pairwise Kendall- τ distance 15.

For each of the 9,856 permutations π in A, compute a lower bound for $P_{\pi}(18,15)$. The sum of $\{LB(P_{\pi}(18,15)) \mid \pi \text{ in A}\}\$ is 19,618,333.

So, $P(18,15) \ge 19,618,333$.

Additional results

Since $P(18,15) \ge 19,618,333$, by Theorem 2, *i.e.*

Theorem 2 (Jiang, Schwartz, Bruck). For all n,d >1, $P(n+1,d) \ge \left|\frac{n+1}{d}\right| * P(n,d)$.

We have $P(19,15) \ge \left[\frac{19}{15}\right] * P(18,15) = 2*19,618,333 = 39,236,666.$

Whereas, by Theorem 1, i.e.

Theorem 1 (Wang, Zhang, Yang, and Ge): Let $m = \frac{(n-2)^{t+1}-1}{n-3}$, where n-2 is a prime power, then $P(n,2t+1) \ge \frac{n!}{(2t+1)m}$.

We have $m = \frac{17^8 - 1}{16} \approx 4.36 \times 10^5$, and $P(19,15) \ge \frac{19!}{15*m} \approx 18,600,815$.

Additional theorems

Theorem 4 (Jiang, Schwartz, Bruck) For all $n \ge 1$ and even $d \ge 2$, $P(n,d) \ge \frac{1}{2} P(n-1,d)$.

Theorem 5 (Jiang, Schwartz, Bruck) For all $n,d \ge 1$,

$$P(n+1,d) \le (n+1)*P(n,d),$$
 i.e., $P(n,d) \ge \frac{P(n+1,d)}{n+1}$

These can also be used to obtain good lower bounds.

Table: Current Lower Bounds for P(n,d)

n\ d	5	6	7	8	9	10	11	12	13
12	899,800	595,160	129,298	85,091	73,068	50,649	19,227	13,935	6,087
13	<mark>9,363,942</mark>	<mark>4,681,971</mark>	629,301	520,253	236,764	158,208	51,046	29,859	14,158
14		<mark>47,638,410</mark>	6,522,803	3,693,495	595,728	525,427	178,009	112,338	52,565
15			<mark>78,491,859</mark>	39,245,930	6,846,611	3,423,306	1,182,803	706,114	190,218
16					33,255,910	18,752,670	8,413,437	4,977,819	1,665,481
17						<mark>282,675,240</mark>	66,863,784	38,745,418	12,013,962
18									27,520,040

What else can be done?

- One can modify the Random/Greedy algorithm (which is described next).
- One can modify the recursive algorithm, so that one computes good lower bounds for P(n,m,d) by a sequence $m_1 < m_2 < ... < m$. That is, first compute a (n, m_1 ,d)-array A. For each $\pi \in A$, compute an (n, m_2 ,d) array B (for P_{π} (n, m_2 ,d)). ... Continue the process until obtaining a (n,m,d)-array. This makes it feasible to compute P(n,d) for large n.
- Create a graph whose nodes correspond to permutations π in $S_{n,m}$ and whose edges connect nodes at distance at least d. Assign each node π a weight corresponding to $P_{\pi}(n,d)$. Find a maximum weighted clique in this graph to compute a lower bound for P(n,d).

Modifying the Random/Greedy program

Random/Greedy:

Let the identity permutation be the 1st permutation in C. For any set C chosen, choose the next permutation in C to be the lexicographically next permutation in S_n with distance at least d to all in C, if one exists.

"Lexicographic" order may not be an obvious choice. For example, consider the order given by the "Steinhaus-Johnson-Trotter" algorithm to enumerate all permutations, where the ith permutation is obtained from the (i-1)th permutation, for all i>1, by a single adjacent transposition.

Example (of SJT order of S_4):

1234			Start
1 2 <mark>4</mark> 3	1423	4123	'4' moves right-to-left
4132			'3' moves left
1432	1342	1324	'4' moves left-to-right
3124			'3' moves left
3 1 <mark>4</mark> 2	3 4 1 2	4312	'4' moves right-to-left
4321			'2' moves left
3 4 2 1	3 2 <mark>4</mark> 1	3 2 1 4	'4' moves left-to-right
2 3 1 4			'3' moves right
2341	2 4 3 1	4231	'4' moves right-to-left
4 2 1 <mark>3</mark>			'3' moves right
2413	2143	2 1 3 4	'4' moves left-to-right

Modified Random/Greedy

Modified Random/Greedy:

Let the identity permutation be the 1st permutation in C. For any set C chosen, choose the next permutation in C to be next permutation in the SJT sequence with distance at least d to all in C, if one exists.

There are advantages to this modification. Specifically, if the i^{th} element of the SJT sequence, say π , is put in C, then one can skip the next d-1 permutations, as they are at distance at most d-1 from π .

Thank you for your attention.

Questions?