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.. Rank Modulation I

In order to overcome the challenges posed by flash memories, the
rank modulation scheme was proposed in [A. Jiang, R. Mateescu,
M. Schwartz, and J. Bruck, Correcting charge-constrained errors in
the rank-modulation scheme, IEEE Trans. Inform. Theory, 56
(2010), 2112-2120. (first appeared in ISIT 2008)]

Figure : right to left: Bruck, Schwartz, Mateescu, Jiang
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.. Rank Modulation II

.
Definition (Rank Modulation)
..
......Use the relative order of cell levels to represent data.

Figure : Figures are taken from (FMS2014 Tutorial Part3 Jiang.pdf) in
A. Jiang’s Home Page
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.. Rank Modulation III

.
Example: Every rank has one cell
........

Figure : Figure is taken from (FMS2014 Tutorial Part3 Jiang.pdf) in A.
Jiang’s Home Page

This corresponds to the permutation [5, 3, 4, 6, 1, 2] (representated
by array) or (1, 5)(2, 3, 4, 6) as product of cycles.
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.. Permutation Codes

.

......Codewords are permutations of the set [n] := {1, 2, . . . , n}.

.

......The set of all permutations of [n] is denoted by Sn.

.

......A permutation code is a non-empty subset of Sn.
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.. Kendall τ -metric on Permutation Codes

.
Definition
..

......

The Kendall distance between two permutations σ and τ denoted
by dK (σ, τ) is the minimum number of adjacent transpositions
(i , i + 1) such that their product is equal to σ · τ−1, where the τ−1

is the inverse of τ and the composition · of two permutations is
done from the right i.e. the value of σ · τ−1 at ℓ ∈ [n] is equal to
the value of τ−1 at σ(ℓ).

.
Example
..

......

dK ([2, 1, 3, 4, 5], [1, 2, 3, 5, 4]) = dK ((1, 2), (4, 5)) = 2,
dK ([2, 3, 1, 5, 4], [2, 1, 3, 5, 4]) = dK ((1, 2, 3)(4, 5), (4, 5)(1, 2)) = 1.
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.. Main problem

.
Main problem of coding theory for PC
..

......

Find P(n, d) := max{|C | | ∅ ̸= C ⊆ Sn dK (C ) ≥ d} or find
“good” lower or upper bounds for P(n, d). Here
dK (C ) := min{dK (σ, τ) | σ ̸= τ, σ, τ ∈ C}.
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.. Known values of P(n, d)—I

.
Known values of P(n, d)
..

......

P(n, 1) = n!.

P(n, 2) = n!
2 .

if 2
3

(n
2

)
< d ≤

(n
2

)
, then P(n, d) = 2. [S. Buzaglo and T.

Etzion, Bounds on the size of permutation codes with the
Kendall τ -metric, IEEE Trans. Inform. Theory, 61 (2015),
No. 6, 3241-3250.]

P(3, 3) = 2, P(4, 3) = 5, P(4, 4) = 3.

P(5, 3) = 20, P(5, 4) = 12, P(5, 5) = 6, P(5, 6) = 5.
P(6, 4) = 64, P(6, 5) = 26, P(6, 6) = 20, P(6, 7) = 11,
P(6, 8) = 7, P(6, 9) = P(6, 10) = 4. [S. Vijayakumaran,
Largest permutation codes with the Kendall τ -metric in S5
and S6, IEEE Comm. Letters, 20 (2016), No. 10, 1912-1915.]
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.. The “least” unknown value of P(n, d)—II

.
The “least” unknown value of P(n, d)
..

......

P(6, 3) ≥ 102. [S. Vijayakumaran, Largest permutation codes
with the Kendall τ -metric in S5 and S6, IEEE Comm. Letters,
20 (2016), No. 10, 1912-1915.]

P(6, 3) ≤ 116. [A. Abdollahi, J. Bagherian, F. Jafari, M.
Khatami, F. Parvaresh and R. Sobhani, New upper bounds on
the size of permutation codes with minimum Kendall τ -metric
of three, to appear in Cryptogr. Commun.]

.
Conjecture
..

......

P(6, 3) = 102. A possible way to attack the conjecture is to solve
a specific binary linear programming problem with 720
indeterminates and 720 constraints given in [S. Vijayakumaran,
Largest permutation codes with the Kendall τ -metric in S5 and S6,
IEEE Comm. Letters, 20 (2016), No. 10, 1912-1915.]
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.. Our main result

.
Theorem
..

......P(n, d) = 4 for all n ≥ 6 and 3
5

(n
2

)
< d ≤ 2

3

(n
2

)
.

.
Sketch of Proof (Upper bound)
..

......

It follows from Theorem 23 of [X. Wang, Y. Zhang, Y. Yang and
G. Ge, New bounds of permutation codes under Hamming metric
and Kendall’s τ -metric, Des. Codes Cryptogr., 85 (2017), No. 3,
533-545.] that if P(n, d) ≥ 5, then we must have

(5
2

)
d ≤ 6×

(n
2

)
and so d ≤ 3

5

(n
2

)
. Therefore P(n, d) ≤ 4.

.
Sketch of Proof (Lower bound)
..

......

We need the following lemma: Since P(n, d + 1) ≤ P(n, d), it is
enough to show that there exists an P(n, ⌊23

(n
2

)
⌋) ≥ 4 or

equivalently show that there exists a subset C of Sn of size 4 such
that dK (C ) ≥ ⌊23

(n
2

)
⌋.
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.. Sketch of Proof(Lower Bound)

.
Sketch of Proof (Constructing Permutations)
..

......

We need the following lemma: Let n ≥ 5 be an integer. If n ≡ 0, 2
(mod 3) (n ≡ 1 (mod 3)), then there exist 3 non-empty subsets
with the same sumset which partitions [n] ([n] \ {1}), respectively.
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.. Sketch of Proof(Lower Bound)

.
Sketch of Proof of the lemma
..

......

If n is 5, 6, 7, 8, 9 and 10, respectively, then{
{5}, {1, 4}, {3, 2}

}
,
{
{6, 1}, {5, 2}, {3, 4}

}
,
{
{2, 7}, {3, 6},

{4, 5}
}
,
{
{8, 4}, {7, 3, 2}, {1, 5, 6}

}
,
{
{6, 5, 4}, {9, 1, 2, 3},

{8, 7}
}
and

{
{10, 8}, {9, 2, 7}, {3, 4, 6, 5}

}
are the partitions

of [n] or [n] \ {1} satisfying the lemma.

Now suppose that n > 10. Hence there exist t > 0 and
r ∈ {5, 6, 7, 8, 9, 10} such that n = 6t + r . Note that if n ≡ 1
(mod 3), then r ∈ {7, 10}.
Consider t + 1 subsets Θ1,...,Θt+1 of [n] as follows:

1, . . . , r︸ ︷︷ ︸
Θ1

, r + 1, . . . , r + 6︸ ︷︷ ︸
Θ2

, . . . , n − 11, . . . , n − 6︸ ︷︷ ︸
Θt

, n − 5, . . . , n︸ ︷︷ ︸
Θt+1
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.. Sketch of Proof(Lower Bound)
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.. Sketch of Proof(Lower Bound)

.
Sketch of Proof of the lemma
..

......

If n is 5, 6, 7, 8, 9 and 10, respectively, then{
{5}, {1, 4}, {3, 2}

}
,
{
{6, 1}, {5, 2}, {3, 4}

}
,
{
{2, 7}, {3, 6},

{4, 5}
}
,
{
{8, 4}, {7, 3, 2}, {1, 5, 6}

}
,
{
{6, 5, 4}, {9, 1, 2, 3},

{8, 7}
}
and

{
{10, 8}, {9, 2, 7}, {3, 4, 6, 5}

}
are the partitions

of [n] or [n] \ {1} satisfying the lemma.

Now suppose that n > 10. Hence there exist t > 0 and
r ∈ {5, 6, 7, 8, 9, 10} such that n = 6t + r . Note that if n ≡ 1
(mod 3), then r ∈ {7, 10}.
Consider t + 1 subsets Θ1,...,Θt+1 of [n] as follows:

1, . . . , r︸ ︷︷ ︸
Θ1

, r + 1, . . . , r + 6︸ ︷︷ ︸
Θ2

, . . . , n − 11, . . . , n − 6︸ ︷︷ ︸
Θt

, n − 5, . . . , n︸ ︷︷ ︸
Θt+1

A. Abdollahi Permutation codes under Kendall τ -metric



.. Sketch of Proof(Lower Bound)

.
Sketch of Proof of the lemma
..

......

If n is 5, 6, 7, 8, 9 and 10, respectively, then{
{5}, {1, 4}, {3, 2}

}
,
{
{6, 1}, {5, 2}, {3, 4}

}
,
{
{2, 7}, {3, 6},

{4, 5}
}
,
{
{8, 4}, {7, 3, 2}, {1, 5, 6}

}
,
{
{6, 5, 4}, {9, 1, 2, 3},

{8, 7}
}
and

{
{10, 8}, {9, 2, 7}, {3, 4, 6, 5}

}
are the partitions

of [n] or [n] \ {1} satisfying the lemma.

Now suppose that n > 10. Hence there exist t > 0 and
r ∈ {5, 6, 7, 8, 9, 10} such that n = 6t + r . Note that if n ≡ 1
(mod 3), then r ∈ {7, 10}.
Consider t + 1 subsets Θ1,...,Θt+1 of [n] as follows:

1, . . . , r︸ ︷︷ ︸
Θ1

, r + 1, . . . , r + 6︸ ︷︷ ︸
Θ2

, . . . , n − 11, . . . , n − 6︸ ︷︷ ︸
Θt

, n − 5, . . . , n︸ ︷︷ ︸
Θt+1

A. Abdollahi Permutation codes under Kendall τ -metric



.. Sketch of Proof(Lower Bound)

.
Sketch of Proof (Constructing Permutations) case n − 1 ≡ 0, 2
(mod 3)
..

......

N :=
∑n−1

i=1 i =
(n
2

)
.

pairwise disjoint subsets ∆1,∆2 and ∆3 of [n − 1] such that∑
j∈∆i

j = N
3 for all i ∈ {1, 2, 3}.

Corresponding to each ∆i , we construct a permutation αi .

ri := |∆i |, ∆′
i := {n − j | j ∈ ∆i} and Θi := [n] \∆′

i .

Suppose that j1 < j2 < · · · < jri and l0 < l1 < · · · < ln−ri−1

are all elements of ∆′
i and Θi , respectively.

Define αi as follows: αi (t) = jt and αi (n − s) = ls for all
t ∈ {1, . . . , ri} and s ∈ {0, . . . , n − ri − 1}.
dK (αx , αy ) =

∑
i∈∆x

i +
∑

i∈∆y
i = 2N

3 .

dK (ξ, αx) = |{(i , j) | i < j ∧ α−1
x (i) > α−1

x (j)}| = |{(i , j) | i <
j , i ∈ Θx}| = 2N

3
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